
this print for content only—size & color not accurate spine = 1.205" 640 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro ASP.NET 2.0 E-Commerce
in C# 2005
Dear Reader,

Throughout my many years of developing e-commerce applications, I have
encountered countless problems and solutions that I have always wanted to
share with my fellow developers. This book is the product of those experiences.

Pro ASP.NET 2.0 E-Commerce in C# 2005 discusses all the decisions you
have to make when designing and developing an ASP.NET 2.0 e-commerce
application for a client, from gathering the requirements to deploying the
application. Because e-commerce is often a vague concept, it can be hard at
first to pin down exactly what is involved in a successful solution. To overcome
this problem, I have created a fictitious company, Little Italy Vineyards, that I use
as a case study throughout this book. Using this real-world approach, I show
you how to turn e-commerce concepts into code.

After you have read this book and followed the case study from beginning to
end, you will have a solid understanding of how to develop a professional
ASP.NET 2.0 e-commerce application that is scalable and secure. Specifically,
you will learn about the finer points of application architecture, about how to
set up your Visual Studio 2005 project correctly, and about how to obtain and
install the SSL certificates you will need. I cover the software engineering
decisions extensively, as you might expect, but I also cover all the business
elements you need to know to develop and maintain a successful e-commerce
application that will fulfill your client’s expectations.

Thank you for reading; I wish you every success in your development efforts.

Paul Sarknas

Author of

Beginning Visual Web
Developer 2005 Express:
From Novice to Professional

Co-Author

ASP to ASP.NET Migration
Handbook: Concepts and
Strategies for Successful
Migration

US $59.99

Shelve in
Microsoft/.NET

User level:
Intermediate–Advanced

Sarknas
ASP.NET 2.0 E-Com

m
erce

THE EXPERT’S VOICE® IN .NET

Paul Sarknas

Pro
ASP.NET 2.0
E-Commerce
in C# 2005

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-724-9

9 781590 597248

55999

6 89253 59724 8

Companion eBook
Available

Learn the secrets behind a successful ASP.NET 2.0 e-commerce solution.

www.apress.com
www.littleitalyvineyards.com

SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

RELATED TITLES

Pro

in C#
2005

Pro ASP.NET 2.0
E-Commerce in
C# 2005

Paul Sarknas

7249ch00FM.qxd 11/13/06 9:14 PM Page i

Pro ASP.NET 2.0 E-Commerce in C# 2005

Copyright © 2006 by Paul Sarknas

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-724-8

ISBN-10 (pbk): 1-59059-724-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole Flores
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor/Artist: Kinetic Publishing Services, LLC
Proofreader: Lori Bring
Indexer: Brenda Miller
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section.

7249ch00FM.qxd 11/13/06 9:14 PM Page ii

Contents at a Glance

iii

About the Author . xv

About the Technical Reviewer. xvii

Introduction. xix

PART 1 ■ ■ ■ The Basics
■CHAPTER 1 Introducing E-commerce Systems. 3

■CHAPTER 2 Introducing the Microsoft Tools . 7

■CHAPTER 3 Exploring the Company Background for the Case Study 13

PART 2 ■ ■ ■ The Business Aspects
■CHAPTER 4 Gathering the Requirements . 19

■CHAPTER 5 Turning Sales into Profits . 27

■CHAPTER 6 Examining the Risks . 31

PART 3 ■ ■ ■ The Project Plan and Design
■CHAPTER 7 Modeling Objects with UML . 39

■CHAPTER 8 Designing the Database with SQL Server 2005 55

■CHAPTER 9 Using Visual Studio 2005. 91

PART 4 ■ ■ ■ Architecture
■CHAPTER 10 Building the Complete System Architecture . 111

■CHAPTER 11 Creating the Common Objects. 115

■CHAPTER 12 Creating the Data Access Layer . 131

■CHAPTER 13 Creating the Business Logic Layer . 151

■CHAPTER 14 Exploring Your Integration Options . 173

■CHAPTER 15 Creating the Presentation Layer . 191

7249ch00FM.qxd 11/13/06 9:14 PM Page iii

iv

PART 5 ■ ■ ■ Core Development
■CHAPTER 16 Developing the Product Catalog . 223

■CHAPTER 17 Building the Shopping Cart. 269

■CHAPTER 18 Integrating the PayPal SDK. 321

■CHAPTER 19 Implementing the Checkout Process . 347

■CHAPTER 20 Processing the Payment . 375

■CHAPTER 21 Creating the Administrator’s Control Panel. 433

■CHAPTER 22 Building the Customer’s Account . 475

PART 6 ■ ■ ■ Order Fulfillment and Promotion
■CHAPTER 23 Managing the Orders . 501

■CHAPTER 24 Promoting the Site and Upselling. 533

■CHAPTER 25 Accessing the Money from the Credit Card Transaction 567

PART 7 ■ ■ ■ Deployment
■CHAPTER 26 Exploring Your Compilation and Deployment Options 575

■CHAPTER 27 Configuring the Production Environment. 583

PART 8 ■ ■ ■ Aftercare
■CHAPTER 28 Supporting and Maintaining the Application 601

■INDEX . 609

7249ch00FM.qxd 11/13/06 9:14 PM Page iv

Contents

About the Author . xv

About the Technical Reviewer. xvii

Introduction. xix

PART 1 ■ ■ ■ The Basics

■CHAPTER 1 Introducing E-commerce Systems . 3

Defining Commerce . 3

Studying the Benefits of E-commerce . 4

Examining the Barriers to Entry . 5

Looking Forward . 6

Summary . 6

■CHAPTER 2 Introducing the Microsoft Tools . 7

Introducing the Individual Tools. 7

Visual Studio 2005. 7

Microsoft .NET Framework 2.0 . 8

C# 2.0 . 8

Microsoft Visio or Visual Studio 2005 Class Designer 8

SQL Server 2005 . 8

Internet Information Services. 8

SSL Certificate . 8

Introducing the Development Environment. 9

Introducing the Production Environment . 9

Going with In-House Hosting . 9

Outsourcing the Hosting . 10

Summary . 11

v

7249ch00FM.qxd 11/13/06 9:14 PM Page v

■CHAPTER 3 Exploring the Company Background
for the Case Study . 13

Getting Some Company Background . 13

The Current Situation . 14

The Competition. 14

Moving Forward and Increasing Sales. 14

Why a Case Study? . 15

Summary . 16

PART 2 ■ ■ ■ The Business Aspects

■CHAPTER 4 Gathering the Requirements . 19

What Is Requirement Gathering? . 19

How to Gather Requirements . 20

Interviews . 21

Documentation . 21

The Official Requirements . 22

Product Catalog . 22

Shopping Cart. 22

PayPal Credit Card Handling . 22

Tracking Information . 23

Content Management System . 23

About Us . 23

Contact Form . 24

User Account Login . 24

Wine of the Month Club . 24

Age Verification . 24

Summary . 25

■CHAPTER 5 Turning Sales into Profits. 27

Selling the Main Product . 27

Selling Affiliate Products . 28

Partnering with Similar Businesses . 28

Creating a User Membership. 29

Selling Advertising Space. 29

Summary . 29

■CONTENTSvi

7249ch00FM.qxd 11/13/06 9:14 PM Page vi

■CHAPTER 6 Examining the Risks . 31

Supply for the Demand. 31

System Downtime . 32

Processing Payments . 33

Physical and Logical Attacks . 33

Physical Attack . 33

Logical Attack . 34

Prevention . 34

Sensitive Information and Data. 34

Summary . 35

PART 3 ■ ■ ■ The Project Plan and Design

■CHAPTER 7 Modeling Objects with UML . 39

Benefits of Object Modeling. 39

Activity Diagrams. 40

Searching . 40

Adding Items to the Shopping Cart . 41

Checking Out . 43

Processing Abandoned Shopping Carts . 44

Account Registration . 45

Use Cases . 46

Class Diagrams . 48

EndUser . 48

EndUserType. 49

Product . 50

ProductCategory . 50

Orders . 51

OrderDetails . 51

Address . 52

ContactInformation . 52

ShoppingCart . 53

CreditCard . 53

Summary . 54

■CONTENTS vii

7249ch00FM.qxd 11/13/06 9:14 PM Page vii

■CHAPTER 8 Designing the Database with SQL Server 2005 55

Creating the Database . 55

Creating the Tables . 59

Products . 62

ProductCategory . 64

ProductImages . 65

Orders . 66

OrderDetails . 68

OrderStatus. 70

EndUser . 71

EndUserType. 73

Address . 74

ContactInformation . 76

ShoppingCart . 78

Creating the Relationships . 79

OrderDetails . 83

Orders . 84

EndUser . 84

Products . 85

ShoppingCart . 86

Writing the Type Inserts . 87

EndUserType. 87

OrderStatus. 87

ProductCategory . 87

Examining the Complete Database . 87

Summary . 89

■CHAPTER 9 Using Visual Studio 2005 . 91

Understanding the Case Study’s Approach . 91

Understanding the Case Study’s Solution . 92

Creating the Web Project . 95

Expanding the Web Project . 99

Images . 100

Scripts . 100

CSS. 100

Admin. 100

■CONTENTSviii

7249ch00FM.qxd 11/13/06 9:14 PM Page viii

Adding the Class Libraries . 103

Common . 103

DataAccess . 104

Operational . 104

BusinessLogic . 104

Summary . 108

PART 4 ■ ■ ■ Architecture

■CHAPTER 10 Building the Complete System Architecture 111

Introducing Multitier Architecture . 111

Introducing the LittleItalyVineyards Architecture . 112

Introducing the Presentation Layer . 113

Introducing the Data Access Layer. 113

Introducing the Business Logic Layer . 114

Summary . 114

■CHAPTER 11 Creating the Common Objects . 115

Why Use Common Objects? . 115

Revisiting the Classes. 116

EndUser . 116

EndUserType. 116

Product . 116

ProductCategory . 117

Orders . 117

OrderDetail . 118

Address . 118

ContactInformation . 118

ShoppingCart . 119

CreditCard . 119

Implementing the Common Classes. 119

Refactoring Within Visual Studio 2005. 126

Summary . 130

■CHAPTER 12 Creating the Data Access Layer. 131

Why a Data Access Layer?. 131

Using the Microsoft Data Access Application Block 132

■CONTENTS ix

7249ch00FM.qxd 11/13/06 9:14 PM Page ix

■CONTENTSx

Implementing the Classes . 134

The DataAccessBase Class . 134

The Connection String. 139

The StoredProcedure Class . 142

The DataBaseHelper Class . 144

Summary . 149

■CHAPTER 13 Creating the Business Logic Layer . 151

Introducing the Business Logic Layer . 151

Implementing the Business Logic Layer . 152

Getting Everything Working Together . 159

Summary . 172

■CHAPTER 14 Exploring Your Integration Options . 173

Introducing the Operational Manager . 173

Implementing the Operational Manager . 174

Implementing Web Services . 181

Performing Some Exception Handling . 187

Summary . 190

■CHAPTER 15 Creating the Presentation Layer . 191

Looking at the Overall Design . 191

Implementing the Master Page . 192

Creating the Individual Web Pages . 198

About Us . 198

Winery . 202

FAQ. 206

Contact Us. 212

Default Error Page . 220

Summary . 220

PART 5 ■ ■ ■ Core Development

■CHAPTER 16 Developing the Product Catalog . 223

Creating the Product Catalog . 223

Creating the Stored Procedure . 224

Writing the Code and Classes . 229

Displaying the Product Images . 244

7249ch00FM.qxd 11/13/06 9:14 PM Page x

Creating the Product Details . 250

Searching the Catalog . 259

Summary . 268

■CHAPTER 17 Building the Shopping Cart . 269

Adding to the Shopping Cart . 269

Displaying the Shopping Cart . 285

Updating the Shopping Cart. 300

Processing Abandoned Shopping Carts. 313

Summary . 319

■CHAPTER 18 Integrating the PayPal SDK . 321

Introducing the PayPal SDK . 321

Why PayPal? . 322

Installing the PayPal SDK . 322

Configuring Your Developer Central Account . 322

Creating the Sandbox Account . 327

Creating the Test Certificate. 336

Configuring the Test Certificate . 342

Integrating the PayPal APIs . 343

Summary . 345

■CHAPTER 19 Implementing the Checkout Process . 347

Checking Out of the Shopping Cart . 347

Creating a New User Account . 350

Logging In . 366

Summary . 373

■CHAPTER 20 Processing the Payment . 375

Implementing the PayPal API Code. 375

Implementing the Direct Payment . 381

Entering the Billing and Shipping Information . 390

Submitting the Payment . 404

Finalizing the Payment . 422

Summary . 431

■CONTENTS xi

7249ch00FM.qxd 11/13/06 9:14 PM Page xi

■CHAPTER 21 Creating the Administrator’s Control Panel 433

Setting Up the Control Panel . 433

Creating the Administrator Login . 437

Creating a New Product . 446

Updating a Product . 457

Viewing All the Products. 468

Summary . 473

■CHAPTER 22 Building the Customer’s Account . 475

Setting Up the Customer Account. 475

Extending the Customer Login . 479

Viewing the Orders . 480

Viewing the Order Details. 487

Summary . 498

PART 6 ■ ■ ■ Order Fulfillment and Promotion

■CHAPTER 23 Managing the Orders . 501

Viewing the Orders . 501

Viewing the Order Details. 508

Creating the Order Fulfillment . 518

Informing the Customer . 524

Issuing Refunds . 526

Summary . 531

■CHAPTER 24 Promoting the Site and Upselling . 533

Upselling with Related Products . 533

Promoting with the E-newsletter . 543

Allowing the Customer to Unsubscribe . 557

Summary . 566

■CONTENTSxii

7249ch00FM.qxd 11/13/06 9:14 PM Page xii

0caa2832af4d32f2887b7e4351ab0f49

■CHAPTER 25 Accessing the Money from the
Credit Card Transaction . 567

Transferring Funds . 567

Accessing the Money in Other Ways . 570

Requesting a Check. 570

Money Market . 570

Debit Card . 571

Cash with ATM . 571

Purchase from PayPal Shops . 571

Summary . 571

PART 7 ■ ■ ■ Deployment

■CHAPTER 26 Exploring Your Compilation and
Deployment Options . 575

Building the Code . 575

Precompiling and Publishing . 576

Finalizing the Application . 579

Summary . 582

■CHAPTER 27 Configuring the Production Environment. 583

Setting Up the Domain . 583

Registering Your Domain . 583

Setting Up the DNS Servers . 584

Setting Up the Hosting Plan . 584

Setting Up IIS and the Database . 585

Configuring the SQL Server 2005 Database 590

Configuring the SSL Certificate . 590

Obtaining the SSL Certificate. 590

Installing the SSL Certificate . 594

Deploying the Application. 597

Copying the Source Code . 597

Finalizing the Web.config File . 597

Summary . 597

■CONTENTS xiii

7249ch00FM.qxd 11/13/06 9:14 PM Page xiii

PART 8 ■ ■ ■ Aftercare

■CHAPTER 28 Supporting and Maintaining the Application. 601

Monitoring the Application . 601

Why This Is Important . 602

Performance . 602

Discovering and Solving Errors . 604

Optimizing the Application . 604

Summary . 607

■INDEX . 609

■CONTENTSxiv

7249ch00FM.qxd 11/13/06 9:14 PM Page xiv

About the Author

■PAUL SARKNAS currently is the president of his own consulting company,
Sarknasoft Solutions LLC, which provides enterprise solutions to
a wide array of companies utilizing the .NET platform. He specializes
in C#, ASP.NET, and SQL Server. Paul works intimately with all aspects
of developing software including planning, requirements gathering, designing,
developing, testing, and deploying.

Paul has worked with Microsoft technologies for almost a decade and
has used .NET since its inception.

In addition to authoring and technical reviewing for Apress, Paul was the coauthor of
ASP to ASP.NET Migration Handbook: Concepts and Strategies for Successful Migration
(Wrox Press, 2003).

Paul is available on a consulting basis for any of your technology needs, including building
an application, offering guidance for an existing project, and helping resolve a difficult scenario
or business logic question.

You can contact Paul via his consulting company’s website at www.sarknasoft.com or via
his personal site at www.paulsarknas.com. He welcomes questions and feedback of any kind.

xv

7249ch00FM.qxd 11/13/06 9:14 PM Page xv

7249ch00FM.qxd 11/13/06 9:14 PM Page xvi

About the Technical Reviewer

■FABIO CLAUDIO FERRACCHIATI is a senior consultant and a senior analyst/developer using
Microsoft technologies. He works for Brain Force (www.brainforce.com) in its Italian branch
(www.brainforce.it). He is a Microsoft Certified Solution Developer for .NET, a Microsoft
Certified Application Developer for .NET, and a Microsoft Certified Professional, and he is
a prolific author and technical reviewer. Over the past ten years he has written articles for
Italian and international magazines and coauthored more than ten books on a variety of
computer topics.

xvii

7249ch00FM.qxd 11/13/06 9:14 PM Page xvii

7249ch00FM.qxd 11/13/06 9:14 PM Page xviii

Introduction

In this book, I will use a real-world example to demonstrate how to construct a multitiered
ASP.NET application that allows a business to sell its merchandise online. Using this real-world,
case-study approach, the discussion will start with gathering the requirements. Then I’ll go into
designing and modeling the database, building the architecture, completing the code base, and
finally compiling and deploying the production environment.

By following the case study in this book, you will be able to use the skills you’ve learned to
expand a company’s customer base and sell products online, thus increasing the company’s
profitability.

Who This Book Is For
The audience for this book includes developers who have experience building ASP.NET appli-
cations. Although that experience will help with the overall understanding of the information
provided, it is also beneficial if you have some experience working with object-oriented prin-
ciples and multitiered architectures.

How This Book Is Structured
This book is structured in a unique way compared to many of the other books you’ll find on
the shelves. Specifically, it covers the business-related issues of e-commerce in addition to
covering the technological aspects.

The discussion will begin with an introduction of the fictitious company used for the case
study; then I’ll cover gathering the requirements, modeling the application, designing the database,
establishing the architecture, coding the functionality, and finally deploying to the production
environment.

Prerequisites
To follow along with the book’s case study, you should have a few years experience working
with object-oriented programming languages and an understanding of multitiered software
applications.

In addition, you will need Microsoft Visual Studio 2005 or Microsoft Visual Web Developer
Express and Microsoft SQL Server 2005 or SQL Server Express.

xix

7249ch00FM.qxd 11/13/06 9:14 PM Page xix

■INTRODUCTIONxx

Downloading the Code
You can download the complete source code and database scripts used in this book from the
Source Code/Download section of the Apress website (http://www.apress.com) and from the case
study’s sample website (www.littleitalyvineyards.com).

Contacting the Author
You can contact the author via psarknas@sarknasoft.com or via www.sarknasoft.com or
www.paulsarknas.com.

7249ch00FM.qxd 11/13/06 9:14 PM Page xx

The Basics

The first three chapters of this book will introduce commerce systems, focusing on elec-

tronic commerce systems. After explaining commerce, I’ll discuss the tools you’ll use and

the case study you’ll examine throughout the remainder of the book.

P A R T 1

■ ■ ■

7249ch01.qxd 11/13/06 9:15 PM Page 1

7249ch01.qxd 11/13/06 9:15 PM Page 2

Introducing E-commerce
Systems

Welcome to Professional ASP.NET 2.0 E-Commerce with C# 2005! Undoubtedly, this book
has attracted you because you have built some e-commerce systems and have an intermedi-
ate to professional level of programming and development experience with Microsoft ASP.NET
and C#. You probably want to take your development and programming skills to the next level.
Well, this book will help you do just that.

Although many books on the market cover similar topics, this book will go beyond the
competition; specifically, I will not only provide a great deal of engineering and development
information but will also focus on the business aspects of creating, implementing, and main-
taining an e-commerce system for your business. This focus will give you the information you
need to build a successful e-commerce business.

In the process, this book will present a case study so you can examine the progression of
how a retail store can enable its business with e-commerce to enhance its bottom line. After
completing the book, you will be able to apply the concepts you have learned across many dif-
ferent industries within the marketplace.

I would like to thank you for your interest in this topic; I am confident you will find the
information presented to be helpful in all your professional e-commerce endeavors. Without
further ado, you’ll start on your quest to build the best possible e-commerce system.

Defining Commerce
What exactly is commerce? It is a term used quite a bit in the English language today, and it
happens to have different meanings in different contexts. Before I get ahead of myself, you
should examine the actual definition of the word commerce from Dictionary.com:

Commerce: The buying and selling of goods, especially on a large scale, as between cities

or nations.

—Dictionary.com

3

C H A P T E R 1

■ ■ ■

7249ch01.qxd 11/13/06 9:15 PM Page 3

As mentioned, the term has several meanings in different contexts. For this book’s purposes,
I will be focusing on commerce that pertains to the buying and selling of goods and services.
Even though the previous definition refers to that action on a large scale, that doesn’t neces-
sarily have to be the situation.

Let’s take the definition just one step further; I have discussed what only the term commerce
means. However, I will be focusing on commerce that is conducted electronically, or what is
commonly referred to as e-commerce, in this book. In other words, the commerce will be con-
ducted over the Internet and through web-based software applications. You still need human
interaction at some point in the transaction, such as when fulfilling and delivering the order,
but much of the activity will be automated.

Studying the Benefits of E-commerce
Now that you have explored what commerce and electronic commerce are, what can you do
with it? How can your business benefit from it? Imagine a small retail store that sells a small
amount of products; these products consist mostly of handmade crafts that people would use
to decorate their homes. This retail store is in a rural area and for the most part is known only
to the locals of the area in which it is located. As a result of this retail store being known to only
a small segment of people, the potential sales are limited. The reason is quite clear: customers
who can drive to the physical location of the store within a reasonable amount of time will have
the most likelihood of being repeat customers. Anyone who does not live within a relatively
short distance will most likely take their business elsewhere. So, how can this particular retail
store maximize potential sales?

If this local retail craft store can electronically enable its commerce activities, that effort
will result in the greatest probability of maximizing sales and profits for the company. Why will
this endeavor benefit the store? Well, this will be beneficial for a number of reasons. Probably
the most advantageous reason to implement e-commerce is so the retail store can reach poten-
tial customers far beyond its current local limit. The store could even attract customers from
countries around the world. In addition, no retail store hours will limit the sales as with the
physical location of the store. The store hours of the e-commerce application (or virtual store)
will have no restrictions; the doors will be open twenty-four hours a day, seven days a week.

The following are the primary advantages of having an e-commerce system:

• You can reach customers around the globe instead of a limited geographic location.

• You have the ability to be open twenty-four hours a day, seven days a week.

• You can automate the process of taking and fulfilling orders.

• In addition to automating the order taking, you can receive many more orders at one
time than you can with one salesperson working at the physical store location.

While I’m mentioning all the positive aspects of enabling a business with e-commerce,
I need to mention that these advantages are accurate in theory. It is important to keep in mind
that you may encounter many challenges when it comes to e-commerce. In the next section,
I will outline some of the common obstacles.

CHAPTER 1 ■ INTRODUCING E-COMMERCE SYSTEMS4

7249ch01.qxd 11/13/06 9:15 PM Page 4

Examining the Barriers to Entry
After learning about all of these benefits, why wouldn’t you want to enable your business with
e-commerce? In most situations, having an e-commerce system will be beneficial. Then why
do many businesses still not take advantage of the great technological advancements of the
Internet and of e-commerce? The reasons are known in marketing or economical terms as the
barriers to entry; these are issues preventing or discouraging people from entering into a new
area of operating a business.

Some businesses can encounter the following barriers to entry when it comes to
e-commerce:

• Aversion to change

• Intimidation or ignorance of technology

• Up-front investment and cost

• Inability for maintenance

• Improper coordination with shipping companies

• Inability to ensure the customer receives the merchandise

These are some of the reasons that prevent or discourage some individuals from entering
into e-commerce. Aversion to change is probably the most common issue that prevents indi-
viduals from embracing such advancements. In fact, many individuals will simply be content
with what they are accustomed to doing. For example, a small business owner who has been
relatively successful for a number of years may not want to move to an e-commerce system
because of the notion that the business has been doing fine for quite some time; basically, they
just might not want to deal with such an enhancement. This kind of thinking is usually directly
related to the second item listed—that many individuals today are still intimidated by tech-
nology and are not well versed in technological aspects of business. Therefore, this fear of
technology (or of learning new aspects of technology) is a major barrier in the e-commerce
marketplace. In addition, e-commerce will always require an up-front investment to establish
such a system. Many companies will not view this cost as an investment but instead as an
additional cost that cannot be justified at the given time. Other companies simply do not have
the budget for such activities. Also, an advanced e-commerce system will have to be maintained
over time, and that will discourage some.

Although these are all major factors that have the potential to prevent people from enter-
ing the e-commerce arena, another barrier to entry probably cannot be overcome for many
companies in specific industries. This barrier is for companies that sell oversized items, such
as companies that sell musical instruments, farming equipment, or perhaps heavy machinery.
All the products these companies sell are traditionally very large. Customers will not want to
pay extremely expensive shipping costs for these items (except in a few unique circumstances).
For this reason, these types of companies are usually not in a hurry to enable their businesses
with e-commerce capabilities. However, these companies could tweak their Internet presence
strategies so that their websites become online brochures, or they could offer customers the
option to pay online but then pick up the merchandise at the store location.

Although the topic of barriers to entry is large enough to fill several chapters, the goal of
this section was to outline some of the main challenges you might encounter. You’ll need to
examine every situation on an individual basis and draft a strategy to overcome any such barriers.

CHAPTER 1 ■ INTRODUCING E-COMMERCE SYSTEMS 5

7249ch01.qxd 11/13/06 9:15 PM Page 5

Looking Forward
As mentioned, this book will not only give thorough engineering advice on how to build
a solid e-commerce infrastructure but will also give information about the actual business
aspects of the system. The engineering side will deal with thoroughly planning the system
along with designing the database and modeling objects. I will also introduce project manage-
ment so you can keep your client informed about the progress of the project and so you can
efficiently manage your resources. You will use the best tools available for managing this proj-
ect and building the system.

Summary
Well, you have arrived at the end of the first chapter, which defined e-commerce and how it
can help maximize the potential sales of a business. Many more chapters are to come. In the
next chapter, I’ll discuss the main tools you will use in this book to build, manage, and com-
plete a solid and scalable e-commerce system.

CHAPTER 1 ■ INTRODUCING E-COMMERCE SYSTEMS6

7249ch01.qxd 11/13/06 9:15 PM Page 6

Introducing the Microsoft Tools

When planning to build and design any kind of project or structure, whether it is a house or
a software system, it is imperative that you obtain the right tools.

The tools you’ll be using in this book are arguably the best available from Microsoft for
building and managing software applications. You can break down all the tools into different
environments: the development environment and the production environment. Each tool will
have its own purpose within one of the environments or both.

This chapter will be fairly brief and primarily outline the following topics so that you can
progress toward building the case study application of the book:

• The individual tools and software applications

• The development environment

• The production environment

Introducing the Individual Tools
The range of the tools you’ll use consists of engineering and management tools. The following
sections will briefly describe each and outline some of their major features that are relevant to
this book and to building e-commerce solutions.

Visual Studio 2005
Visual Studio 2005 is a comprehensive integrated development environment (IDE). This is
Microsoft’s de facto development tool for building and designing .NET software and applica-
tions. You can use it to quickly develop a variety of multitiered applications such as Windows
or client-server applications, web applications, and even mobile applications for devices such
as cellular phones and personal digital assistants (PDAs).

Unique features of Visual Studio 2005 include debugging tools, IntelliSense, and other
built-in features such as controls. These features will greatly aid your development effort when
writing the code and when starting the maintenance and debugging process.

Finally, at the end of the development, Visual Studio 2005 lets you compile and deploy the
code with only a few clicks.

7

C H A P T E R 2

■ ■ ■

7249ch02.qxd 11/13/06 9:15 PM Page 7

Microsoft .NET Framework 2.0
The Microsoft .NET Framework 2.0 is the latest development environment that allows devel-
opers to take advantage of specific libraries. Having such a setup is referred to as managed code.

C# 2.0
C# (pronounced “see sharp”) is one of many .NET-compliant languages from Microsoft that is
an object-oriented programming language. Version 2.0 is the number of the overall program-
ming language and is the latest version available.

Microsoft Visio or Visual Studio 2005 Class Designer
Microsoft Visio is a complete diagramming and modeling software tool. This will come in
handy when modeling the system and architecture utilizing Unified Modeling Language (UML)
and even when modeling and diagramming the database design. You can use Visio in more
advanced ways by reverse engineering databases and generating code from class diagrams. For
the purposes of this book, you will use Visio primarily for its UML and diagramming features.

If you do not own Microsoft Visio, you can certainly use the new Class Designer tool that
is included with Visual Studio 2005.

SQL Server 2005
SQL Server 2005 is the latest database engine from Microsoft that provides enterprise data
management along with business intelligence tools. This data storage mechanism provides
a secure and scalable data management platform that you can use for a variety of applications
when you need to manage a great amount of data.

A new feature included with SQL Server 2005 is compatibility with the common language
runtime (CLR); in other words, it gives you the ability to write C# code within stored procedures
in addition to Transact-SQL (T-SQL).

Internet Information Services
Internet Information Services (IIS) is the web server included in Microsoft Windows Server 2003.
This will serve the requested web pages that are eventually built and displayed to the user.

SSL Certificate
A Secure Sockets Language (SSL) certificate is a standard used for web applications or e-commerce
applications when sensitive data is transmitted from the client to the server. You can purchase
a certificate from various sources, and it is integrated within the web server, which in this case
is IIS. The cost of SSL certificates has declined considerably over the past couple of years. In
Chapter 27, I will give extensive instructions for how to obtain and configure such a certificate.

CHAPTER 2 ■ INTRODUCING THE MICROSOFT TOOLS8

7249ch02.qxd 11/13/06 9:15 PM Page 8

Introducing the Development Environment
The development environment consists of everything you need to perform the preliminary
work of developing, testing, and preparing to deploy the finalized application.

The following are included within the development environment:

• Visual Studio 2005

• SQL Server 2005

• Microsoft Visio or Visual Studio Class Designer

• IIS and SSL certificate

All these tools will be necessary to plan, develop, and eventually test the entire application,
which you will ultimately deploy to the production environment (discussed next). In addition,
all these tools will work in conjunction to produce the end result.

The size of the team that will be working on the project and application will determine
how extensive the development environment will be. It is possible that only one person will be
working on the entire project, which would mean the development environment would be
confined to a single computer. On the other hand, several developers could be working on this
project, and the environment could expand across an entire network or even allow for remote
access.

Introducing the Production Environment
Discussing the production environment at this point of the book seems to be getting ahead of
myself. However, it is extremely important to start thinking about it and start making some
decisions now. This is because you must consider several factors, such as whether you’ll host
the application in-house or outsource the hosting to a company that specializes in such services.
Several advantages and disadvantages are associated with either decision. You’ll first look at
purchasing the equipment and hosting the application in-house.

Going with In-House Hosting
As mentioned, hosting the e-commerce application in-house has advantages and disadvan-
tages. You also need to consider other factors. For instance, who is your client? Is the client
a large company or corporation? Is your client a small company with few employees? This is
important because many larger corporations and companies will already have established
data/server centers within their current infrastructure and will have enough employees to
manage them. With this being said, I’ll highlight the advantages and disadvantages of hosting
the application in-house in the next two sections.

Advantages
The main advantages are the following:

• Nonfixed cost, usually on a monthly or annual basis

• Total ownership of equipment

CHAPTER 2 ■ INTRODUCING THE MICROSOFT TOOLS 9

7249ch02.qxd 11/13/06 9:15 PM Page 9

Although these advantages are apparent, they of course come at a significant cost. In
other words, for you to gain these advantages, you need a specific infrastructure or foundation
in place. This comes in the form of having redundant power supplies and Internet feeds or
connections. A small company with a cable or DSL Internet connection would not be able to
host such an application and thus gain the associated benefits. You would need additional
requirements of backup power generators and redundant Internet connections. As such, the
following section explains the numerous disadvantages of hosting the application in-house.

Disadvantages
The following are several disadvantages:

• Extensive infrastructure required (including many servers, database servers, redundant
networks, and power connections)

• Software licensing required

• Expensive to maintain

• Employees with specific skills and knowledge required

• Regularly scheduled upgrades and security maintenance

• Potential of many hours spent to maintain

By simply comparing the advantages and disadvantages, it is quite evident that hosting
an application in-house is not in everyone’s best interest. However, you cannot arrive at this
decision by simply looking at these issues. Every company and client you deal with will be dif-
ferent in size and ability; therefore, you will need to analyze every situation for its own unique
capabilities.

Larger clients and corporations will often already have an infrastructure set up that the
e-commerce application can fit into nicely. However, for this book, you will be dealing with
a small company (you’ll find out details about the company in the next chapter), which will
not have such an extensive infrastructure. Given this information, outsourcing the hosting is
the best decision; I will discuss this in more detail in the next section.

Outsourcing the Hosting
Currently, many companies specialize in hosting web applications of all sizes. As a result of
the increased number of companies offering such services, the competition is quite extensive,
and competitive rates are passed onto the consumer. Therefore, you will find in many scenar-
ios that outsourcing the hosting is the best choice. However, it is still a good idea to compare
and contrast the advantages and disadvantages in the same manner as you did for in-house
hosting.

Advantages
In many situations, the advantages will outweigh the disadvantages when outsourcing the
hosting of an e-commerce application:

CHAPTER 2 ■ INTRODUCING THE MICROSOFT TOOLS10

7249ch02.qxd 11/13/06 9:15 PM Page 10

• They offer a competitive monthly cost.

• Specialists available for support on a 24/7 basis.

• Software licensing fees are leveraged through the hosting company.

• Upgrades and security patches are included.

• Regular backups take place.

• You can leverage the hosting company’s redundant power supplies, redundant Internet
connections, and security infrastructure.

To sum, the advantages of outsourcing the application hosting include having a monthly
expenditure that is cost effective because you are leveraging the hosting company’s expertise,
support personnel, software licensing, and backup and redundant connections within their
infrastructure.

Disadvantages
Along with the many advantages, outsourcing the hosting does have some disadvantages.
They are the following:

• Monthly or annual fixed cost

• Nonownership of the hardware and equipment

• Limited or no control over the infrastructure or overall setup

It is apparent that the disadvantages are fewer than the advantages listed. The main dis-
advantage is that some companies or clients will see the monthly (or annual) cost essentially
as “renting” the equipment; they may think that purchasing the equipment will be more advanta-
geous and cost effective in the long run. However, as mentioned earlier, you need to consider
many other factors when purchasing hardware or equipment. These additional factors are
costly and usually can be justified only in larger corporations. Therefore, you can achieve more
benefits in the outsourcing model for a much smaller cost with the monthly (or annual) fixed
fee. You can think of this as simply a cost of doing business.

Therefore, in this book, the case study will use a hosting company under the outsourcing
model.

Summary
In this chapter, I outlined the tools you will use throughout this book. I explained and com-
pared the options available for how the application will be hosted. Although you might not
think of this as a specific tool, it is critical to start thinking of the hosting options at this stage.
As mentioned, you will use the outsourcing model for hosting in the case study because it
involves a small company that does not have (or cannot afford) an extensive data/server cen-
ter within the physical constraints of its office. This will become clearer in the next chapter,
where I introduce the company of the case study. Let’s move forward and learn about your client.

CHAPTER 2 ■ INTRODUCING THE MICROSOFT TOOLS 11

7249ch02.qxd 11/13/06 9:15 PM Page 11

7249ch02.qxd 11/13/06 9:15 PM Page 12

Exploring the Company
Background for the Case Study

In this book, to relate the building of an e-commerce system to real-world development sce-
narios as much as possible, you will follow along with a case study of a fictitious company.
This chapter will outline all the details of the company, along with its industry, and show how
building an e-commerce application will help the company. I will not only give the name of
the company and where they are located but also give a brief history about who they are.

In addition, I will briefly describe how the company will have the ability and potential to
expand its current customer base to all parts of the world as opposed to selling to primarily
the local residents of the community only.

Lastly, I will explain why it is beneficial to utilize the case study approach as opposed to
merely laying out the strict engineering aspects and being completely technical in a book of
this nature.

■Note In this book, I will use a fictitious company and name. All names of companies, products, and indi-
viduals are strictly fictitious, and any occurrences of real names are merely coincidences.

Getting Some Company Background
As mentioned, I will give you some history of the company used in this book’s case study. The
name of the company is Little Italy Vineyards, and as you have probably already guessed, it is in
the wine business. Little Italy Vineyards has been a family-owned business since the early 1950s.
It was founded by the current owner’s parents, who were born in Italy and owned a vineyard
there but wanted to move to America to raise their family. As a result, they moved to America
after selling their vineyard in Italy and eventually started a new vineyard, Little Italy Vineyards, in
California. Sales have been steady since the opening many years ago. However, the vineyard has
to deal with a high level of competition. More specifically, they are located in Sonoma Valley,
which is a well-known wine-making area and home to many vineyards. Many companies pro-
vide wine-tasting tours through the area, which produces many of the customers and potential
sales. Although the wine-tasting tours bring in a lot of people to the area, many vineyards are
competing for the same customers.

13

C H A P T E R 3

■ ■ ■

7249ch03.qxd 11/13/06 9:15 PM Page 13

Throughout the following sections, I will outline the current situation of the company,
how it currently operates, and who the competition is.

The Current Situation
Currently, Little Italy Vineyards has a steady flow of sales and many repeat customers. This has
been the case with its volume of sales and customers since the company started. As a result of
the company being family owned, its has been able to keep the overhead of staff and employ-
ees to a minimum by having many of the family members help in the day-to-day operations of
the vineyard.

The vineyard can continue doing business as it has been for many years, but now the
children of the family are going to be taking over the day-to-day operations when their parents
retire. Therefore, the family has decided, after some careful thought, to expand the business
and sales into the world of technology. More specifically, the family wants to sell its wine
products online through a newly created website.

As it stands now, Little Italy Vineyards is old-fashioned in the sense that it does not use
any modern technology in its current business operations. In fact, the vineyard still uses a great
deal of paper and manual record-keeping methods. Currently, the vineyard accepts only cash
and checks and would like to accept credit card payments. Sometimes, checks that are accepted
for payment from customers are ultimately returned from that bank for nonsufficient funds,
and the vineyard is unable to collect on these returned checks because the payment is ulti-
mately never fulfilled.

As mentioned, the vineyard faces a great deal of competition. In the next section, I will
outline the competition in more detail.

The Competition
In Sonoma Valley where the vineyard is located, several other vineyards are similar in size and
also family owned. With this situation, a steady level of competition always has been present
for Little Italy Vineyards. Many of the wines in the region are similar, and many customers
develop a relationship with maybe one or two individual vineyards, which results in a poten-
tial lower amount of repeat customers to other vineyards.

It is this situation that has caused Little Italy Vineyards to step outside its normal business
model and attempt to differentiate itself from the competition. By selling products online in
addition to continuing to sell on the property, this will give the vineyard a competitive advantage—
most of the local competition has not yet used technology to expand and sell wine online.

Moving Forward and Increasing Sales
Since Little Italy Vineyards has decided to enter the e-commerce business, this will obviously
present a challenge and require a different type of thinking than in the past. The primary
reason for this is because once Little Italy Vineyards is able to sell online and promote its
products to a worldwide audience, its overall customer base will have the ability to expand
immediately. This larger customer base will be the most beneficial aspect of expanding the
business to an e-commerce platform. The natural question is, how will this expanded business
take place specifically?

CHAPTER 3 ■ EXPLORING THE COMPANY BACKGROUND FOR THE CASE STUDY14

7249ch03.qxd 11/13/06 9:15 PM Page 14

As mentioned, Little Italy Vineyards will experience the potential of a mass increase of
sales as a result of selling its wine online. Why will this be the case? Well, let’s take its original
business model of selling wine only from the small store located on the vineyard grounds.
When Little Italy Vineyards is selling its wine only on the premises, the potential volume of
sales is not being maximized. Essentially all the customers are local residents, except for a few
tourists who come in via a wine-tasting tour. Regardless how great the wine is, if individuals
live far from the vineyard, most likely they are not going to visit the vineyard frequently.

Therefore, the family has decided to maximize the vineyard’s sales potential by entering
into e-commerce and selling the wine over the Internet. The results of expanding the vineyard’s
operations into e-commerce will maximize the potential of sales and eliminate the locals-only
client base.

When the vineyard’s business is enhanced and the online e-commerce application is com-
plete, Little Italy Vineyards will have a potential customer base that has the ability to reach
anyone in the world. The key word here is potential because the ability for anyone in the world
to place orders through the Internet exists, but that does not necessarily mean that, say, cus-
tomers in Japan or Australia will be purchasing the wine from the vineyard. Again, the key is
that they would be able to do so if they wanted.

As stated, expanding sales and the customer base means customers who live far away
from the vineyard can become customers for the first time. For example, customer A lives
a short distance from the vineyard and likes the wine very much. Well, customer A has rela-
tives in New York. During the holidays, customer A takes some Little Italy Vineyards wine to
relatives in New York. Over the holiday dinner, the wine is consumed by not only the relatives
who live in New York but also by some other relatives in town from Philadelphia and Pittsburgh.
Everyone drinking the wine loves it and wonders how they can get more in the future. Cus-
tomer A explains that the wine is from a small family-owned vineyard in California. Customer
A also explains that the vineyard has a website. The other relatives enjoyed the wine so much
that they visit the website in the next few days and purchase some additional bottles. Instantly,
the relatives of customer A just became customer B, C, D, and so on, and so forth.

■Note If Little Italy Vineyards were not selling online, it would be up to customer A to buy the wine and
send it to their relatives; this could certainly happen, but the likelihood of the relatives buying from the
website themselves is much greater. In fact, this word of mouth can even expand to other customers.

Selling online will give Little Italy Vineyards a competitive advantage in the already highly
competitive wine industry over their nearby competition.

Why a Case Study?
Using a case study when writing about technology—and more specifically in this case, building
an e-commerce application—has many advantages. In this section, you’ll examine why I decided
to use the case study approach and how it will ultimately benefit you when taking on a project
to build and implement an e-commerce application.

CHAPTER 3 ■ EXPLORING THE COMPANY BACKGROUND FOR THE CASE STUDY 15

7249ch03.qxd 11/13/06 9:15 PM Page 15

Everyone involved in this book wanted it to have a unique feel and approach. Many similar
books on the market, for the most part, only give step-by-step instructions on how to engineer or
build a software application. When that is the case, a great deal is left open to interpretation.

Using the case study model, the main focus is to eliminate most of this interpretation and
present the instruction in the best possible real-world setting. For example, in the previous
section, you were able to imagine a current customer taking some wine to their relatives during
the holidays, resulting in Little Italy Vineyards gaining customers who live on the other side of
the country. These examples are just the start of the benefits of using a case study, as opposed
to merely showing the engineering aspects and loading the book full of code examples. In
addition, a case study highlights the business aspects of e-commerce solutions, which you
also need to consider.

Regardless of how great of an e-commerce application is, you’ll encounter up-front
investments and some ongoing maintenance costs. That is why paying attention to the busi-
ness aspects of how it will expand the current sales is important to the overall process. Having
a case study will show exactly how a company can benefit from selling online, and comparing
how the company operated prior to expanding will demonstrate all the benefits.

■Note For the hard-core engineers who want details on code development and design, rest assured—this
book will focus plenty of attention on that type of detail as well.

Summary
Now that I have introduced the company in the case study and have given information about
its background along with its competition, you have reached the end of Part 1. You will now
move on to the next part, which will deal with the business aspects of setting up and developing
the e-commerce system for Little Italy Vineyards. Hard-core programmers (something
I certainly consider myself) should not despair; you are not far away from rolling up your
sleeves, digging into the design of the database, and actually coding the application within the
architecture.

CHAPTER 3 ■ EXPLORING THE COMPANY BACKGROUND FOR THE CASE STUDY16

7249ch03.qxd 11/13/06 9:15 PM Page 16

The Business Aspects

The second part of this book will focus on the business aspects of building an

e-commerce system, with particular regard to the case study. At the end of the day,

whatever type of system you are building, it will have to generate revenue so it can be

maintained and so it can justify the client’s business model. The next three chapters will

address the most important business aspects to consider when you commence building

the actual e-commerce system.

P A R T 2

■ ■ ■

7249ch04.qxd 11/13/06 9:16 PM Page 17

7249ch04.qxd 11/13/06 9:16 PM Page 18

Gathering the Requirements

In a perfect world when you start building a structure such as a house, all the parties involved
communicate all the details of the project in a detailed fashion. However, as you probably
know, we do not live in a perfect world. You will certainly find that this is the case when devel-
oping software systems and applications. Typically, the client is not sure of what they want the
system or project to do; or, they are aware of what they want it to do, but only conceptually.
Regardless of what the client knows or can communicate, one factor seems to be a constant—
the client wants the project completed as soon as possible. The phrase “I want it finished
yesterday” seems to be common in the software world. This pressure from the client can often
result in the developer or development team overlooking the requirements phase of the project
and proceeding prematurely to the actual coding and development phases with only a slim
idea about what they need to build.

In this chapter, you will explore the ins and outs of gathering the requirements from the
client for your project. You will also examine the pressure to bypass this phase that clients and
management teams often place upon the development teams. Specifically, I will answer the
following questions in this chapter:

• What exactly is requirement gathering?

• Why is it beneficial?

• What is the Microsoft Solution Framework?

• How do you gather requirements?

• What are the official case study requirements?

What Is Requirement Gathering?
You may be asking, why is the author explaining to me what a requirement is? To answer this
question, many development teams and companies overlook this phase and jump straight to the
development phase as a result of wanting to get the project finished as soon as they can. A com-
mon quote attributed to Yogi Berra is, “If you don’t know where you are going, how will you know
when you get there?” This is applicable within this discussion because some developers and
development teams indeed start building software applications without knowing what they’re
building. But how will you know for sure when the project is finished for your customer or client?
The simple answer is, you never really will, and you can find yourself in quite the predicament.

19

C H A P T E R 4

■ ■ ■

7249ch04.qxd 11/13/06 9:16 PM Page 19

CHAPTER 4 ■ GATHERING THE REQUIREMENTS20

This oversight in my experience has often led to the project duration being longer and
more work being performed than necessary, thus creating more of an expense for the client.

After reading the previous paragraph, you are probably thinking that this is an overstate-
ment. Perhaps it is; however, many projects today in the real world will be managed in this
fashion, without requirements gathering, because of the pressure to produce a system as
quickly as possible for the client. Many undesired results can arise from proceeding in this
way. That is why it is much more beneficial to inform your client that taking the extra time in
the beginning to discuss, gather, and document the specific requirements will almost always
save a great amount of time at the end and produce a system that will function in the way it
has been expected to function.

Now, I will briefly explain what a requirement is and then what the entire process entails.
A requirement is a sometimes detailed—and sometimes not detailed—instruction that a system or
finished product must include or perform. When in the context of software, a requirement is
typically referring to a feature that the overall system needs to perform. For example, a requirement
of an e-commerce system might be that the system will implement a customized shopping cart as
opposed to a premade, third-party shopping cart.

Every system or structure needs to have an initial plan so that those constructing it know
what they need to build. Therefore, when setting out to build a software application or an
e-commerce application, you need to establish some type of blueprint, prior to taking the first
step, that contains all the requirements.

You might be thinking that gathering requirements seems pretty simple to do. In reality,
though, it will require a lot of work. In the following sections, I’ll explain how to gather requirements.

THE MICROSOFT SOLUTION FRAMEWORK

The Microsoft Solution Framework (MSF) is a set of guidelines, principles, concepts, and proven practices for
designing and engineering software applications with Microsoft technologies. These best practices allow all
developers to take advantage of Microsoft technologies because following such guidelines will provide for the
best possibility that your projects will be delivered on schedule, will be under budget, and will avoid the common
obstacles that accompany every software project. The guidelines established within the MSF have been tested
and used across many different projects in many different industries and therefore gives anyone following
the guidelines an advantage from this past experience and expertise.

As with many topics in this book, the MSF is broad enough to have entire books dedicated to the topic.
However, while you’re learning about planning the project and gathering the requirements, it will be helpful to
read the basics of the MSF provided by Microsoft.

To read about more about MSF, visit the MSF home page at http://msdn.microsoft.com/msf/.

How to Gather Requirements
Now that you know you have to pay proper attention to gathering requirements, let’s discuss
how exactly to go about collecting and documenting requirements.

The main method in which to gather and document the requirements for an application
is to interview the client and discuss the functionality with the client and any other employees

7249ch04.qxd 11/13/06 9:16 PM Page 20

or managers. These individuals are the ones who have knowledge of the business functionality;
in other words, they understand how their business in their industry operates while you as the
engineer or developer might have little knowledge with this regard. You will need to ask exten-
sive questions in these meetings to gain the fullest understanding of what the client expects
and ultimately how the system needs to function. As a result of these numerous meetings and
interactions, you can expend a great deal of time before you write even the first line of code. As
mentioned earlier, this is the reason why many projects will bypass this phase of gathering thor-
ough requirements. However, as mentioned, I have found that spending time gathering
requirements saves time in the development phase.

In the following sections, I will assume you are not going to bypass this phase and that you
will give the necessary time and attention to gathering and documenting the requirements.

Interviews
As mentioned, the primary and most effective method of gathering and defining the require-
ments for a project is to interview the clients, managers, employees, and anyone else in your
client’s company who will eventually be using the system you are building. These individuals
should provide information regarding the specifics of their industry. Take, for instance, the client
in the case study, Little Italy Vineyards; the company, of course, sells wine. You or the other
engineers and developers might not know anything about wine or about selling wine. This is
why having interviews and in-depth discussions about the business and what the clients expect
will provide the knowledge necessary to complete the task.

Another reason why interviews and discussions are important to the success of the project
is that the client might know only conceptually what they want as far as the system is concerned.
They have hired you to build and implement the system because they do not have the expertise
to do so. The discussions might have to follow a pattern where you present individual scenarios
to the client to get their feedback. Regardless, it will require give and take on both ends for an
exchange of information, because you’ll be educating the client about technology and the client
will be educating you and the development team about their business practices.

Documentation
After the interview process, you will undoubtedly accumulate many notes from meeting with
several individuals. Most instances, these notes will be handwritten on some type of notepad.
It is now time to formalize these notes into an official document and then pass it along to the
client for approval. This document will also become a checklist for what functionality needs to
be included in the system that is going to be built.

In addition to functioning as a checklist, the document will also act as an aid for what the
client will expect from you as a consultant. This will help prevent against what is commonly
referred to as scope creep. Scope creep describes a system that was originally intended to perform
one set of functionality, but in the course of the development, additional features are requested.
This can turn into a vicious circle and push the focus away from the initial foundation of the prod-
uct or system. By creating an official requirements document and then presenting it to the client
for approval, you can communicate that additions to the original requirements will entail additional
time, resources, and costs.

CHAPTER 4 ■ GATHERING THE REQUIREMENTS 21

7249ch04.qxd 11/13/06 9:16 PM Page 21

The Official Requirements
I have discussed why it is beneficial to gather the requirements for a project, why oftentimes
a development team will not give sufficient time for this phase of the project, and how to go
about gathering and organizing the requirements. For the project with Little Italy Vineyards,
you’ll take the necessary time to not only gather the requirements but also to formally docu-
ment them and present them to the management of Little Italy Vineyards.

In the following sections, I will outline what the requirements will be for the e-commerce
application for Little Italy Vineyards. To incorporate the previous section within this process,
I will give you some insight into the interviews that have been conducted with the managers
and employees of the vineyard along with some of the notes and other information gathered
during the process. This information will provide a template that you can build upon and even
use in future case studies and projects.

Product Catalog
The product catalog will give the user the ability to browse the bottles of wine the vineyard is
offering. Searching functionality will also be available to the user. Each product in the catalog
will have an explanation of the individual wine. From the product catalog, the user will have
the ability to add any of the individual products to the shopping cart, which will be explained
in more detail in the next section. Lastly, the product catalog will have the ability to be main-
tained from the administrator control panel or from their content management system, which
will be explained in more detail in the “Content Management System” section.

This information has been conveyed to you as a result of interviewing not only the man-
ager of the vineyard but also some of the other employees who have worked there for many
years and know how the business operates on a day-to-day basis. The manager expressed in
the interview that it will be important for all the wines to be classified into different categories.
In addition to the categories, the manager expressed a great concern that when a user or cus-
tomer searches for a product, the search functionality should be flexible enough to provide as
many results as possible for the user to explore and possibly purchase.

Shopping Cart
The system will have a customized shopping cart that will handle the products that are pur-
chased; in addition, it will add the applicable sales tax and information about the user such as
their shipping address. The user will have to either log in to their existing account or create
a new account when finally checking out of the shopping cart and making the final purchase.

Through the interview process, the manager did not have any extensive concerns about
how the shopping cart would function; it just needs to be user-friendly and not utilize another
website to process the transactions. In other words, the shopping cart will be built into the
Little Italy Vineyards site so the user won’t leave the vineyard website to process their payment
securely (which tends to portray a disconnection to the overall application and user experience).

PayPal Credit Card Handling
All transactions and purchases from the e-commerce system will be processed by using the
PayPal software development kit (SDK). This will provide a merchant account for the winery
along with the application programming interfaces (APIs) or web services necessary to

CHAPTER 4 ■ GATHERING THE REQUIREMENTS22

7249ch04.qxd 11/13/06 9:16 PM Page 22

communicate from the e-commerce application to the PayPal credit card transaction center.
This will all be conducted over a secure channel utilizing a Secure Socket Layer (SSL) certificate.

The concerns of the managers at the vineyard are that they are not sure what costs will be
associated with accepting credit cards because they have accepted only cash and personal checks
to this point within their business. Because there are many options in which a company can
accept credit card payments, the competition has increased over the past several years, thus
yielding more competitive processing rates in the overall marketplace.

Therefore, PayPal will be a perfect match for the vineyard because the processing fees are kept
at a minimum, and the vineyard will have easy access to the money processed from all transactions.

Tracking Information
The customer will be informed about when their order has been shipped so they can see the
estimated time that the order will be delivered. Currently, a few companies provide these ship-
ping services and even offer web services you can implement. In fact, if Little Italy Vineyards
partners with only one shipping company, then it can incorporate that shipping company’s
technology into its website and allow the user to query this tracking information directly.

As a result of your interview with the manager of the vineyard, he has expressed he wants
the e-commerce application to be able to supply the customers with as close to real-time
shipping information as possible. His initial fear was that new customers might be leery of
ordering from a small vineyard and wonder whether they would ever receive their goods that
were ordered. Having real-time data and the tracking information from the carrier will most
likely ease any of this hesitation.

Lastly, for the purposes of this case study and the development, the user will have the
ability to view the tracking information that the administrator adds to the orders.

Content Management System
The contact management system will be extensive and consist of a number of components.
More specifically, these components will provide the ability for an administrator to access
a back end of the website and add, edit, and manipulate the content that the user will view.
This will include managing customer orders, managing information on the site regarding the
company, and managing the individual products being sold.

During the interview, the manager expressed he wanted to have the application be
a “one-stop shop.” In other words, the system needs to be inclusive in that not only can the
customers make orders and track their information, but it needs also to be equally as simple
for all the administrators and employees of the vineyard to access and fulfill the orders and
respond to any questions or comments. Lastly, the products for sale will change on a regular
basis, and it needs to be easy to add and alter products in the database to keep the workflow
from slowing down. You will accomplish this by having the administrator control panel, or
what is commonly referred to as a content management system.

About Us
The About Us section of the website and application will be quite simple in that it will give an
overview and perhaps a history of the company. This area could be a static section, but to stay
with the dynamics of the site, you will incorporate it as a section in which the administrator
can add or alter the content from the content management system.

CHAPTER 4 ■ GATHERING THE REQUIREMENTS 23

7249ch04.qxd 11/13/06 9:16 PM Page 23

Including a thorough About Us section in the website will allow for the customer to
understand the vineyard and its history. Creating an atmosphere of a family-owned-and-
operated business is a key aspect of the business, according to the manager.

Contact Form
The contact form will be a generalized section that will allow a user to enter their name, e-mail
address, and any comments or questions they might have. When the user has finished with the
input, the information is then submitted to the company.

The manager of the vineyard expressed that he would like to see an easy way for the cus-
tomer or potential customer to submit a question or comment from the website with little
effort on the customer’s part. As a result of having a brief contact form, any user will have the
ability to send a question, comment, or feedback to the vineyard; and within only a few min-
utes time, they should receive a confirmation message saying that the message was successfully
received by the vineyard and a response is not far away.

User Account Login
All users will be required to create a free account prior to making any purchases. On the site,
the user will also be able to subscribe to a newsletter. In addition, the user will be able to view
their account in a historical fashion. All history, purchases, and payment activity will be read-
ily available. The account will be password protected and offer a mechanism for the user to
have their password e-mailed to them if they happened to forget it.

Lastly, to ensure that sales are not being made to minors, the customers will need to agree
to a disclaimer when registering for the account and ultimately making a wine purchase.

As mentioned earlier, the manager wanted to give the customer a feeling of comfort when
purchasing from the vineyard, and allowing the customer to have the ability to log into their
account at anytime and see the status of their order will extend this feeling of comfort.

Wine of the Month Club
A user can purchase a membership in the Wine of the Month Club and will be charged a monthly
or annual fee to join the club. The benefits of the membership will be that the user will receive
two bottles of wine per month that are determined by management.

This not only allows the subscribed users to try a different product each month but also
acts as an advertising arm to promote the product and offer the potential for the customer to
purchase additional quantities.

The concept of having a club with a monthly subscription was an important aspect that
the manager expressed in his interview about the system. He thinks that it will help promote
additional sales but also that it will give the customer a feeling that they are part of a special
segment of customers and thus get special benefits and discounts that those who are not
members of the club do not get.

Age Verification
Since the product that is being sold is regulated by the government and has age restrictions
associated with it, you will need to implement a verification process that will ensure that those
making purchases are at least a certain age.

CHAPTER 4 ■ GATHERING THE REQUIREMENTS24

7249ch04.qxd 11/13/06 9:16 PM Page 24

As a result of the vineyard being located in the United States where the legal drinking age is
21 years of age, the manager expressed a great concern of the possibility that customers who are
underage and have a credit card will be able to buy wine. This could result in legal implications
and expensive fines if this were to happen; in fact, the vineyard would be held accountable by
the government. Because of this concern and potential liability, the system needs to have
a disclaimer so the customer can agree to the terms indicating that they are of age. The manager
is adamant about having this kind of functionality since the vineyard will not be able to afford
any type of legal action or expensive fines. All sales will need to verify that the customer making
the purchase meets this age requirement. Sales in different countries will have different restric-
tions that you also need to consider.

■Note This case study and book is not meant to act as a legal counsel, which is certainly beyond the scope
of this publication. However, we will provide a disclaimer that will act as a form of a contract that the user or
customer will agree to prior to making a purchase.

Summary
Throughout this chapter, I discussed a great deal about gathering and documenting the business
requirements in order to build a complex e-commerce application. I mentioned several times in
this chapter that although the phase of gathering the requirements is important, people often
overlook it because of time constraints. When a time constraint is presented and the temptation
is there to not pay adequate attention to this phase, remember that skipping this phase could
result in a greater expenditure of time and money toward the end of the project.

CHAPTER 4 ■ GATHERING THE REQUIREMENTS 25

7249ch04.qxd 11/13/06 9:16 PM Page 25

7249ch04.qxd 11/13/06 9:16 PM Page 26

Turning Sales into Profits

Regardless of what type of business is being conducted, one fact is quite obvious: the business
has to generate enough revenue to exceed its overall expenses. If this is not true, the company
will ultimately lose money and cease doing business.

In this chapter, I will discuss all the business aspects of maximizing sales by developing a new
e-commerce website and of attaining the ultimate goal—profits. Specifically, I will discuss the
following in detail:

• Selling the main product or products

• Selling and recommending affiliate products

• Partnering with similar businesses

• Creating a membership with monthly dues

• Selling advertising space

Throughout the chapter, I will show how all these business topics relate to the case study
of Little Italy Vineyards.

Selling the Main Product
The most obvious way to turn sales into profits is for a company to sell its own products and
services. However, even as obvious as it seems, it is worth discussing this topic. The main
advantage of selling your own product online is that you have the most control over your product,
including how much to sell it for and ultimately what your profit will be. Selling your own
product will undoubtedly create the largest profit margin for the company. This is because of
several reasons. First, your product is exactly that—your product. No one knows the product better
than you, and no one knows what your product consists of or how much cost is involved when
creating your product. From this, you can determine your exact costs and then add the appropriate
markup to the product when you sell it to your customers. How much this markup will be is up
to you. Lastly, since the product is yours, when your customers embrace the product—regardless
of whatever it is—they will associate you and your company with the product.

27

C H A P T E R 5

■ ■ ■

7249ch05.qxd 11/13/06 9:16 PM Page 27

Selling Affiliate Products
The next aspect of turning sales into profits might not be quite as obvious as the previous.
However, it is equally as important as selling your own products. You can turn sales into profits
not only by selling your own products but also by selling affiliate products. Affiliate products
are all the products or services that have a strong relation to your own product. These aren’t
items you produce or create yourself; they are items that are provided from a supplier but are
sold with a markup. You sell the other company’s product for a possible percentage or some
type of commission.

For example, in the case study, the primary product is the wine from the vineyard; how-
ever, several products are closely related to wine and can be sold. These include wine glasses,
wine racks or shelves, wine toppers, wine openers, corkscrews, and maybe even a guide or
manual explaining wine and explaining what foods go best with the different types of wines.
You can sell all of these additional products to customers since they are closely related. These
sales will probably account for the second most sales and profits next to selling the company’s
main products. For example, when a customer is purchasing wine, if you can show them some
affordable wine glasses, the customer might just add the wine glasses to their shopping cart
and thus increase the overall sale.

■Note When a customer is purchasing a product on your site and you offer them some related product,
this is known as upselling. You can upsell an affiliate’s products or even your own products.

Within the case study of Little Italy Vineyards, the affiliate products that will be sold are
wine glasses, wine racks, and a guide about wine and what foods best accompany the wines.

Partnering with Similar Businesses
When a business is just starting or has limited cash flow, one of the best ways to increase sales
and gain more customers is by creating various partnerships with other companies that are in
a similar business or industry. This kind of formal networking can have a profound effect on
increasing your visibility with potential customers. In addition to partnering with companies
that are similar, another advantage is to partner with a company that is involved in a related
business.

For example, Little Italy Vineyards wants to sell wine glasses. To do this in the most effi-
cient manner, by partnering with a household appliance store or a glassware company, Little
Italy Vineyards can offer its customers additional products. This is a more formal relationship
than just being affiliates.

The main benefit of aligning your business with other businesses is to leverage each other’s
advertising and market exposure. Lastly, there is essentially no risk to either company involved
and typically no up-front cost. Until a sale of a product is made, the other company involved will
not be paid anything; in addition, both companies have it in their best interests to sell as much
as possible.

CHAPTER 5 ■ TURNING SALES INTO PROFITS28

7249ch05.qxd 11/13/06 9:16 PM Page 28

Creating a User Membership
An effective program to incorporate into your e-commerce business is to establish some sort
of membership for your users and customers. By offering this type of service with benefits, the
users will gain a feeling of acceptance from the company. In other words, they will feel like they
are in a special group of customers beyond the regular, everyday customer.

This also helps overall sales for the company primarily because it is a fixed fee for a specified
amount of time, usually a year. If a customer enjoys the membership’s benefits, they will probably
continue to renew their membership, establishing recurring revenue for the company.

For example, Little Italy Vineyards is going to offer a Wine of the Month Club based on an
annual fee. The customer will pay a fixed fee to join and subsequently will be sent two select
bottles of wine per month. The members will receive regular shipments of wine, and the
company hopes the customer will purchase additional bottles of that particular wine.

As you can probably see, this can be a strong technique for advertising as well. In addition
to the customer or member receiving the two bottles of wine a month, by paying for a mem-
bership they will also have access to other features such as information about wine and all the
different types available at Little Italy Vineyards.

Selling Advertising Space
Last in the discussion of how to turn sales into profits, but certainly not least, is using your web-
site or e-commerce application to sell advertising space. This can be a solid revenue stream for
any type of business. Although this can be beneficial, it will probably have to wait until the
e-commerce application has been established for a while. In other words, in order to sell
advertising space, you have to have a significant amount of traffic coming to your site, which
will take some time to establish. As opposed to the previous methods where they were the main
focal points of revenue streams, selling advertising space will most likely yield a lower amount
of profit. It is usually supplemental revenue, but at the same time it is an aspect you should
consider. After all, the more revenue coming in, the bigger the company’s profits.

To expand in more detail about selling advertising on your website, most sites sell small
banner ads that appear somewhere on the site. For example, perhaps your company will sell
advertising space to a glass company that sells only wine glasses or maybe a company that
sells wine racks and shelves.

Summary
Within this short chapter, I discussed how to make profits for your company from your e-commerce
application. You already know that a company has to attain profits at some point to keep it in busi-
ness. By creating an e-commerce application, you can make profits from not only your main product
but also from other companies’ products and from advertising.

These different techniques have shown over the years to be quite beneficial to an e-commerce
business. They give your e-commerce business a high probability of maximizing its overall sales.
However, you have no guarantee of making profits when you embark on an e-commerce project;
risk will still be present. In the next chapter, you’ll examine in more detail the associated risks of
e-commerce and how to be best prepared.

CHAPTER 5 ■ TURNING SALES INTO PROFITS 29

7249ch05.qxd 11/13/06 9:16 PM Page 29

7249ch05.qxd 11/13/06 9:16 PM Page 30

Examining the Risks

In the previous chapter, I discussed some strategies for turning sales into profits for your company
and selling your product and others online. However, up until this chapter, I have not discussed in
depth the associated risks of opening your business to e-commerce and selling online.

When moving into e-commerce, often the owners and managers of the business will have
many concerns and wonder how they will safeguard against the risks. Your job as a consultant
is to inform them of the risks and how you will design and implement prevention mechanisms
to minimize all the risks and put their minds at ease.

Therefore, in this chapter, you will examine the associated risks of e-commerce, along with
the proper safeguards to implement. This discussion is not meant to discourage any business
from conducting business online but merely intends to bring up the major issues before you
start designing or building any part of the e-commerce system.

Specifically, this chapter will cover the major risks associated with having and maintaining
an e-commerce system along with accepting and transacting payments from customers. I will
discuss the following concepts along with the best practices of how to minimize the risk as
much as possible:

• Supply for the demand

• System downtime

• Payment processing

• Physical and logical attacks

• Sensitive information and data

These items are some of the most common in e-commerce and are likely to lead to questions
from your client. Let’s waste no time and continue to the first item of discussion.

Supply for the Demand
To begin the discussion of the risks associated with e-commerce systems, I will discuss some-
thing that you probably don’t think of as a risk but that can ultimately pose a great threat to
the company overall: not having enough supply for the demand. What does this mean exactly?
Well, this refers to the company not being able to produce or manufacture enough of its prod-
uct to meet the potential demand that an e-commerce system will yield. I use the phrase

31

C H A P T E R 6

■ ■ ■

7249ch06.qxd 11/13/06 9:17 PM Page 31

potential demand because in theory opening your business up to e-commerce will expand
your geographical region to the entire world. But you may not see your sales and orders grow
exponentially overnight once your system is implemented; still, if the proper marketing and
advertising is in place, over a short time it is possible that the business will have many more
orders than in the past. And that can cause supply-and-demand problems.

Let’s again refer to the case study. Before Little Italy Vineyards begins selling its wine online,
the sales are primarily limited to the local community and any visiting tourists. When the
company starts selling the wine online, the customer base really has no boundaries. What does
this mean? The vineyard could be bombarded with orders, possibly too many for the small business
to accommodate. What is the maximum amount of wine the vineyard can produce for a given
time, such as over a three-month span? If the vineyard cannot handle or produce sufficient
quantities, this might turn away customers who then go to another vineyard that has the wine in
stock and ready to ship. Therefore, when you don’t have enough supply to meet the demand, the
potential for lost sales can be high. This could be damaging to the business overall and can
counteract the act of selling online. So, what can you do to prevent or prepare for such an event?
Answering this question will be of the utmost benefit to the company and your client.

The best preventative medicine for this is to, in the beginning of the planning phase, deter-
mine the maximum quantity of products that can be produced in a given amount of time. This
will give the company the threshold they can withstand regarding demand. Having this knowledge
will keep the company prepared when demand exceeds the supply. When this is the case
(although it is a good problem to have), the company can take a number of actions to protect
itself. For example, you can tell the customers from the beginning how many products the
company has for sale. In other words, when the quantity or inventory begins to dwindle, you can
display a message to the customer informing them that supplies are limited or that the order
might take additional time to be fulfilled. Being up front with the customer will help ensure you
have a happy customer, and usually a happy customer is a repeat customer. If this is not imple-
mented and the customer simply places the order assuming the product will be delivered shortly
after the sale is completed, your company will run the risk of keeping the customer waiting.
Most customers do not have a great deal of patience; however, keeping them informed will help
prevent customers from taking their money to your competitor.

System Downtime
The nature of selling your products online is that the products are available 24/7. If your
e-commerce system should happen to crash or be unavailable for any number of reasons,
your company can lose a great deal of sales. Not only will customers simply not be able to
place an order, but also this will hurt the reputation of your company for future sales because
the customer might take their business elsewhere.

A system can go down for many reasons: too much traffic for the web server to handle at
one time, a power outage, a hardware failure . . . just to name a few. The best way to minimize
downtime is to use a reputable server-hosting company. These companies have an infrastructure
that would be expensive to duplicate. They have backup power supplies and generators,
backup Internet connections, and monitoring equipment. Since there is a great deal of com-
petition between hosting companies, you can find competitive and affordable pricing.

CHAPTER 6 ■ EXAMINING THE RISKS32

7249ch06.qxd 11/13/06 9:17 PM Page 32

Processing Payments
Accepting payments when selling your products online will undoubtedly need to be in an
electronic form. In other words, you will need to accept credit cards and possibly even electronic
checks. This has become the standard practice of paying for merchandise when buying online.
Your customers will expect to use this payment method. However, people may have a certain
fear of accepting credit card payments, and most important, you will need to assure your
customers that your system is taking all the necessary prevention methods to protect their
data when ordering from your company online.

To protect your customers’ credit card information, you need to transmit all sensitive
data over a secure connection. You can implement this secure connection with a security cer-
tificate, more commonly referred to as a Secure Sockets Layer (SSL) certificate. With this certificate
installed on the web server, all information passed through the secure channel will be
encrypted and therefore will prevent someone from intercepting the transmission from the
client to the server.

Another option to consider is to not use and implement your own SSL certificate and
instead leverage that of the processing company. For instance, when using PayPal as the credit
card–processing company, you have many options. The ability is available to process your
own transactions in the sense of implementing your own SSL certificate, or you can leverage
a premade shopping cart and use the associated security that the processing company ulti-
mately provides. The decision will usually become clear after the system or application that is
being built is defined. In either case, it is good to always be aware of the options available.

Lastly, the best practice to use when and if it is necessary to store any sensitive data
within the system is to encrypt the data, making it difficult for an intruder to access and
interpret this data. You should implement this regardless of how you will actually process
the credit card transactions.

Physical and Logical Attacks
Having any system available to anyone on the Internet poses the risk of it being attacked by an
intruder. This form of attack can be malicious and be by someone purposely looking for sensitive
data such as Social Security numbers, credit card data, or checking account information. Another
kind of attack could be to simply disrupt your system from running properly by infecting it with
a virus or just slowing down the system. Let’s look at these different types of attacks in more detail.

Physical Attack
A physical attack is an attack that is focused on the system’s hardware or infrastructure. This hap-
pens when a hacker is not necessarily looking for sensitive data but perhaps just wants to disrupt
a system. The intruder could infect the system with a virus that looks for e-mail addresses and uses
its own Simple Mail Transfer Protocol (SMTP) server to spam the recipients it finds. This might turn
out to cause less damage to the company than if sensitive data were stolen; however, this kind of
attack can certainly result in a great deal of downtime. It also opens the door to other attacks,
namely, a logical attack, which I will discuss next.

CHAPTER 6 ■ EXAMINING THE RISKS 33

7249ch06.qxd 11/13/06 9:17 PM Page 33

Logical Attack
A logical attack is an attack that is focused on the system or the software. This happens when
a hacker targets the code and the software looking for a flaw or vulnerability that will allow
them unauthorized access. From this targeted attack, the hacker will most likely want to be
looking for any sensitive data that is stored in the system.

A likely scenario is using a password cracker to force its way into a user’s account. This
attack usually will have the intent of gaining access to sensitive information and data while
gaining access to the account. If this attack is successful, it can do a great deal of damage not
only to your system but also to your customer and ultimately the company’s reputation.

Now that I have discussed different types of attacks, I’ll discuss how you can take pro-
active and preventative measures against these possible attacks.

Prevention
The possibility of attacks to your e-commerce system will always exist. The important aspect
to be educated on is how to use the best practices available to ward off, prevent, and be pre-
pared for any type of attack to your system.

Prevention will come in several varieties. I’ll now talk about preventative measures for
physical attacks. Since physical attacks are geared toward the hardware and infrastructure, the
best prevention for this is to have your e-commerce system hosted in an environment that has
a sophisticated security infrastructure in place. That is why it is best to turn to hosting companies
that specialize in maintaining and protecting server infrastructures. Leverage their expertise and
their around-the-clock monitoring of the infrastructure. In the event of a successful attack, by
hosting your system with a reputable hosting company that has extensive monitoring, you can
quickly quarantine the attack and therefore prevent the damage that can result.

When dealing with logical attacks, the hosting company will help to some degree. However,
since they are targeted more to the software and code, it will be up to the development
practices that are implemented to give the best prevention. You should use encryption for
all sensitive data, and you should use stored procedures and no inline SQL to avoid SQL injec-
tion attacks and password protection.

Sensitive Information and Data
Regardless of what you or your client intends on selling online, you will be dealing with the user
or customer’s personal data, oftentimes referred to as sensitive data. The most common form of
this type of sensitive data is credit card information. All sales within an e-commerce system will
be paid for via a credit card from the consumer. When this sensitive data—in other words, the
credit card number, expiration date, and many times the security code located on the back of
the card—ends up in the hands of an unauthorized user, it can obviously create numerous
problems. This data usually presents a potential risk in two distinct areas. The first issue is
the transmission of the actual credit card data from the client or customer to the system, and the
second issue is the storing of the credit card information within the system database. To safe-
guard the system as best as possible, you will need to consider your options regarding the
processing of credit card transactions.

CHAPTER 6 ■ EXAMINING THE RISKS34

7249ch06.qxd 11/13/06 9:17 PM Page 34

With that said, many different options are available when choosing a credit card–processing
company. This is a result of a great deal of competition and the payment-processing companies
all attempting to gain the business of e-commerce businesses. Since there is a lot of competition,
it is best to shop around and gather as much detail as possible before committing to a specific
processing company.

It is also important to consider and research the options that are available from the local
banking establishments because the client you are perhaps implementing an e-commerce
system for might already have a longstanding relationship with a bank. The systems available
from banks, just as the other processing companies, often have the ability to easily integrate
within your code base.

So, credit card processing is an absolute must when selling online. When selling online,
the customer expects to pay via a credit card. Therefore, obviously there is no workaround to
this particular item or risk. Many consumers are comfortable, or are becoming comfortable,
purchasing merchandise online by using a credit card. So to keep up with the competition,
your company will obviously have to accept credit cards to pay for the merchandise it sells.
However, you don’t necessarily have to store or save a user’s credit card information within
the database of the system. The benefit of storing the information is that when the customer
returns to your site as a repeat customer, they do not have to reenter their payment or credit
card data. But storing this sensitive information in a database, while being convenient for the
customer, presents a potential security risk. How is this sensitive information stored? It is
stored as plain text in the database? No, this plain text could be easily read by the naked eye if
someone were to intrude the system and extract the credit card information. Can you store
the data in a safe method? The answer is yes; a best practice is that if you are going to store any
sensitive information within your database, then you must encrypt the sensitive data. If
the sensitive information is encrypted, then if an intruder is able to see the information, they
will not be able to interpret or use that information so readily.

Sometimes you need to store and recall a user’s credit card information, such as when you
charge a recurring fee for a service or product, perhaps on a monthly or quarterly basis. A good
example is the monthly subscription or even the Wine of the Month Club mentioned earlier.
To alleviate any concern for your customers, encrypt the data, and then assure the customers
you are encrypting this sensitive data and that no one will have ready access to it. This will be
important to convey since there is an abundance of credit card and identity theft these days
on the Internet.

Summary
In this chapter, you examined the major risk factors of entering into e-commerce. Along with
noting the risks, I offered solutions and workarounds so you can be as prepared as possible
and incorporate all the appropriate security. If you are a die-hard programmer or member of
a development team that builds e-commerce systems, you’re in luck—the next chapter will
focus on the architecture and on building the system.

CHAPTER 6 ■ EXAMINING THE RISKS 35

7249ch06.qxd 11/13/06 9:17 PM Page 35

7249ch06.qxd 11/13/06 9:17 PM Page 36

The Project Plan and
Design

The third part in this book will focus on the phase immediately before actually coding and

developing the system. This phase includes designing the objects that will be utilized,

designing the database schema,and setting up and organizing the Visual Studio 2005 solution.

P A R T 3

■ ■ ■

7249ch07.qxd 11/13/06 9:17 PM Page 37

7249ch07.qxd 11/13/06 9:17 PM Page 38

Modeling Objects with UML

Modeling a software system is a phase that almost always needs to be performed before
actually coding the system. Undoubtedly, some type of modeling will take place for most sys-
tems. This can be some simple diagrams sketched on paper or can be the best
scenario—using a formal modeling structure, namely, Unified Modeling Language (UML).

UML is a language that represents how a system or application will behave, how it will interact
with the user and other components within the system, and how it will process data. To complete
this chapter, you do not have to be a UML expert; however, you will need some fundamental
knowledge of UML. Since including a complete reference or tutorial on UML is outside the scope
of this publication, you can read more about the basics of UML at the Object Management Group
site (http://www.uml.org). This nonprofit consortium produces and maintains the standards for
UML, and its website contains UML documentation and tutorials.

This chapter will outline all the details necessary to thoroughly model the project for the
Little Italy Vineyards case study. You will be utilizing UML with Microsoft Visio to create the
different modeling designs and diagrams. I’ll cover the following with regard to the case study:

• Activity diagrams

• Use cases

• Class diagrams

Prior to modeling the case study system, you’ll look into the basics of why it is beneficial
to take the time in a project to implement this formal type of modeling and designing.

Benefits of Object Modeling
Formally modeling your software system prior to performing any coding has many benefits. The
main benefit is that you’ll gain a thorough understanding of what exactly the system will need to
perform. Having this thorough understanding of the system will allow for the utmost scalability
and the best performance possible. This is because while modeling the system at a macro level,
along with the individual micro levels, you’ll create a blueprint for how information will flow
through the system. At the onset of developing a software system, the individuals involved might
assume they know everything that the system is required to do or perform. But it’s only by thor-
oughly modeling the system that you’ll truly know how the system should behave, how it should
interact with the user and other components within the system, and how it should process data.

39

C H A P T E R 7

■ ■ ■

7249ch07.qxd 11/13/06 9:17 PM Page 39

Activity Diagrams
A common diagram used within UML is an activity diagram, which represents the flow of the
business logic of your system. The activity diagram will detail a specific task, or scenario, and
how the system will accommodate the individual scenario. It will give a high-level view of the
operation and is like a common flowchart. Although a single activity diagram might outline
and model the system at the highest level, several other activity diagrams will show the func-
tionality of the many individual scenarios that comprise the entire system. For example,
a common scenario for an application is when a user logs into their account. At the level of
the user, they will see the web page that will allow them to enter their username and pass-
word; however, as you are aware, several functions are executing behind the scenes. To model
this scenario, you would create an activity diagram using UML to show the business flow of
a user logging in to the system and how the business flow is handled.

Modeling these different scenarios that occur within your software system will help you
understand how to develop and code this functionality. The activity diagrams will eliminate many
of the surprises that would be otherwise present if this phase of modeling were not performed.

Within the following sections, I will discuss the high-level functionality that the Little Italy
Vineyards e-commerce system is going to include. In other words, I’ll define the scenarios
that make up the high-level activity diagrams. Prior to learning how to design the activity dia-
grams, refer to Table 7-1, which identifies the symbols that I’ll use in the activity diagrams.

Table 7-1. Activity Diagram Symbols and Objects

Symbol/Object Description

Solid black circle Demonstrates the initial state of the activity

Arrow Shows the flow of action between different activities

Oval/rectangular Presents a specific action state

Diamond Represents a decision that proceeds in one way or another

Black circle/clear edge Demonstrates the final state of the diagram

Searching
The first activity diagram will outline the searching functionality within the e-commerce
system. The user will have the ability to enter criteria for searching; regarding the case study,
this will usually be a name of a specific wine or type of wine. Since this is a high-level view,
the diagram will outline two occurrences. First, if the search functionality finds results in the
database, the results will be displayed to the user so they can browse in further detail. Sec-
ond, if the search functionality doesn’t find any results matching the criteria, the user will
be informed and provided with the opportunity to return to the search page to search again.
Figure 7-1 shows the Search Activity diagram.

CHAPTER 7 ■ MODELING OBJECTS WITH UML40

7249ch07.qxd 11/13/06 9:17 PM Page 40

Figure 7-1. Search Activity diagram

As shown in Figure 7-1, after the initial state, the user will enter their search criteria.
Specifically for the case study, the individual criteria will be the name of the wine, the type
of the wine such as red or white, the range in price, and finally the age of the wine.

Adding Items to the Shopping Cart
After users search for their items, they will browse through the results listed. Upon finding an
item or product they want to buy, they will click the button to add the product to their shop-
ping cart. Figure 7-2 shows the Shopping Cart activity diagram.

CHAPTER 7 ■ MODELING OBJECTS WITH UML 41

7249ch07.qxd 11/13/06 9:17 PM Page 41

Figure 7-2. Adding items to the Shopping Cart activity diagram

As mentioned, the customer will add various items to the shopping cart during their
shopping experience on the site. Once they add the items to the shopping cart, the subtotals
and any associated fees will be added and summarized for the user. At this point, the user
can then continue shopping or decide that their order is complete and therefore check out
and pay for the merchandise. As shown in Figure 7-2, when the user decides to finalize the
transaction, they will have the ability to log in to the current system if they have an existing
account. If they do not have an existing account, they will need to register their information
and establish a new account. Later in the “Account Registration” section, I will show an activity

CHAPTER 7 ■ MODELING OBJECTS WITH UML42

7249ch07.qxd 11/13/06 9:17 PM Page 42

diagram reserved for this process. However, in this instance, when a new account is com-
pleted, the user will not have to register again; instead, when returning, they will need to
merely enter their newly created account credentials. Finally, after the user logs in with
already established credentials, the final step will be for the user to enter the payment or
credit card information.

Checking Out
When the user has finished shopping and wants to check out, pay, and finalize their order,
several steps will need to occur for processing this task. The next activity diagram, Checking
Out, will illustrate this very process. Figure 7-3 shows that after the decision has been made to
finalize the order, the user needs to enter the payment information (most likely the credit card
number) with the shipping address, which may or may not be the same as that of the billing
address of the credit card. The payment is processed by sending the payment information to
the credit card processing gateway, and then a response is returned. This response is one of
two possible items. Either the transaction is accepted and the payment has been processed
or the payment has not been accepted. The payment may not be accepted for any number
of reasons, and typically a code will explain why.

Figure 7-3. Checking Out activity diagram

CHAPTER 7 ■ MODELING OBJECTS WITH UML 43

7249ch07.qxd 11/13/06 9:17 PM Page 43

Examine the diagram in Figure 7-3, and walk through the ordering process. As mentioned,
the user will enter the billing information along with the billing address and finally the ship-
ping address. After entering this information, the user sees a summary displaying all the
information they have entered so that they can verify the entry. If they are satisfied with the
entry and accept the verification, they can then confirm the order, which will submit the
payment to the payment gateway. Once the payment information is submitted to the pay-
ment gateway, the system will be looking for a return response.

This response will contain significant information. The most important information
within the response will be a notification or identifier about whether the payment was
processed successfully. If the payment was transacted successfully, the response will contain
a confirmation code. When this is the case, as shown in the diagram, this information will be
displayed to the user on the next web page. On the other hand, if the payment is not success-
ful and the money has not changed hands from the customer to the company, an indicator
will explain why the payment was not accepted. It could be that the credit card information
was not found, an expiration date was not correct, or there was not a sufficient amount of
credit available on the customer’s credit card. These are a few of the many possible reasons.
Regardless of the reason, the system will take the user to a web page informing them of the
reason why the payment was not completed. From this point, the user can reenter their pay-
ment information or close the application (and possibly return later to buy the product).
Perhaps they will need to get in contact with their credit card company or wait until their
next payday to buy some Little Italy Vineyards wine.

Processing Abandoned Shopping Carts
Each time a customer adds items to the shopping cart, the information is stored in the data-
base. I’ll explain this in more detail in future chapters; however, at this time I’ll explain the
concept from a high level via an activity diagram. As you probably have already guessed at
this point, when a user adds an item to the shopping cart, they may not always continue to
the end of the process by checking out and completing the transaction. So, what happens to
the items that are added to the shopping cart that is never finalized? The answer is that the
ShoppingCart table will begin to have many abandoned or orphaned shopping cart items.
To prevent the database from storing a great deal of this information, at some point the
abandoned shopping carts will need to be deleted or cleaned. Figure 7-4 shows the Process-
ing Abandoned Shopping Carts activity diagram that illustrates this procedure.

CHAPTER 7 ■ MODELING OBJECTS WITH UML44

7249ch07.qxd 11/13/06 9:17 PM Page 44

Figure 7-4. Processing Abandoned Shopping Carts activity diagram

Again, later in the book I will explain in detail how you can set up this process. For now,
a high-level discussion is sufficient. Therefore, this process will be a scheduled process as
a job within the SQL Server database. A specific time will be established as to when this
process should be executed. When this process is executed, as shown in the diagram, the
stored procedure will query the database for the abandoned shopping carts. Abandoned
shopping carts will be defined by the date on which they are created. Therefore, when the
process is executed, if the current time is greater than the time limit specified, perhaps
24 hours, then those results will be deleted. If no results are found, then the process simply
does nothing except ends the execution and waits until the next scheduled execution.

Account Registration
When a user or customer is searching the website and finding items they are interested in,
they are free to do so without registering an account. They can even add as many products to
the shopping cart as they want without registering. However, when they want to begin the
process of checking the items out of the shopping cart and offering the payment details, they
will be prompted for their current username or password, or if they are not a current member,
they will need to establish a user account. When establishing this user account, the system will
need to record specific information. If the customer is a return customer and has an estab-
lished username and password, they will have the ability to log in and bypass the registration
process. This is a standard practice with most of today’s e-commerce systems when making
purchases online. Figure 7-5 shows the Account Registration activity diagram.

CHAPTER 7 ■ MODELING OBJECTS WITH UML 45

7249ch07.qxd 11/13/06 9:17 PM Page 45

Figure 7-5. Account Registration activity diagram

When the user finds out they need to register a new account, they will see a standard
form-field web page for entering all the necessary user contact information. Within this par-
ticular information, the system will ask the user to agree to the terms of service. In addition,
since the wine business is unique, you will ask the user to agree to have their age verified by
a third-party verification service. An important aspect for a new user registering an account
will be that they agree to this verification. Basically, if a customer does not agree to have their
age information verified—or if they agree but then the verification fails—they will not be able
to proceed with registering an account with the vineyard.

The Account Registration activity diagram has brought you to the end of the activity dia-
grams. You’ll now get a macro view of the system by studying and developing some use cases.

Use Cases
The use cases you will be designing and using for the purposes in this chapter will be slightly
different from the activity diagrams. More specifically, the use cases will show a macro-level
view of the system and how users will interact with it. Before getting ahead of myself, I’ll first
discuss some basics of what exactly use cases are and how you’ll use them for the Little Italy
Vineyards case study.

CHAPTER 7 ■ MODELING OBJECTS WITH UML46

7249ch07.qxd 11/13/06 9:17 PM Page 46

Use cases are typically diagrams that outline the usage requirements for the system. They
are helpful in that they show a high-level view in which different elements of the system inter-
act. Contained within a use case are several elements:

Actors: Represent a person, organization, entity, or external component of the system and
are drawn as stick figures

Associations: Represent situations that are present when an actor is involved with a use case

System boundaries: Provide a specific scope of the use case

Packages: Aid in organizing the use cases into specific groups

Figure 7-6 shows the use cases for the Little Italy Vineyards case study.

Figure 7-6. Use cases for Little Italy Vineyards

CHAPTER 7 ■ MODELING OBJECTS WITH UML 47

7249ch07.qxd 11/13/06 9:17 PM Page 47

Within these use cases, you can see that the system contains a few actors. The obvious
actors are the customer, the verification service, and the credit card processing company or
gateway. Each of the actors interacts with each other differently. You can see that the customer
has the most use cases. However, when the customer happens to be a new user and needs to
register for a new account, they will share a use case with the verification service to identify
whether the customer is eligible to make purchases from the vineyard.

Class Diagrams
In this section, you’ll model the common objects used with the e-commerce system. These
are, of course, individual classes and are certainly not going to be the only classes that the
finalized system will contain. They will be the most common objects or classes that the sys-
tem will use or be based upon.

As a result of first identifying and then modeling these common objects, you will have
your first blueprint of the database; you’ll use this blueprint to design from in the following
chapter. Table 7-2 lists the common classes.

Table 7-2. Common Objects

Common Class Description

EndUser Describes all users within the system

EndUserType Describes the classification of the users and their associations

Product Describes what is being sold

ProductCategory Describes the categories in which products can be classified

Orders Contains the information about what the customer purchase

OrderDetails Contains the details about an individual order

Address Contains address information for any other related object

ContactInformation Contains contact information for any other related object

ShoppingCart Contains the information about the products the customer chooses to
purchase

CreditCard Contains the information for payment

From each of these common classes, I will provide a class diagram that will depict each
of the attributes and properties within the class. These classes will not have any methods or
functions because they are simply objects that will contain detailed information about the
overall system objects. Let’s now explore the classes.

EndUser
The EndUser class will contain all the information for any type of user who interacts with the
e-commerce system. This user could be a customer or even an administrator. The distinction
between the roles of the different users will be identified with the EndUserTypeID property,
which will be explained in more detail in the “EndUserType” section. Lastly, the EndUser
class will contain the first name, last name, address ID, and contact information ID from the

CHAPTER 7 ■ MODELING OBJECTS WITH UML48

7249ch07.qxd 11/13/06 9:17 PM Page 48

ContactInformationID class, which will also be discussed later in this chapter. Figure 7-7
shows the class diagram of the EndUser class.

Figure 7-7. EndUser class diagram

EndUserType
The EndUserType class will be fairly brief. It will contain only two separate properties within
the class. This class will serve as a lookup class for identifying and associating different types
of users and their respective roles or classifications. The EndUserTypeID property will have
a unique ID, which is then subsequently associated with a unique name for that ID. This will
be located under the Name property, as shown in Figure 7-8.

Figure 7-8. EndUserType class diagram

CHAPTER 7 ■ MODELING OBJECTS WITH UML 49

7249ch07.qxd 11/13/06 9:17 PM Page 49

Product
The Product class will be a major class that is going to be used throughout the e-commerce
system. This is the case because, after all, the goal of the system is to enhance and automate
more sales for the vineyard. The company wants to sell its products, which of course are wine
and any related items. Therefore, the Product class will outline all the individual details of
each product. Each product will have a unique ID, a name, a description, and a price.
Figure 7-9 shows the Product class diagram.

Figure 7-9. Product class diagram

ProductCategory
The ProductCategory class will be similar to the EndUserType class in that it will serve as a lookup
table for adding descriptions for each product. Figure 7-10 shows the ProductCategory class diagram.

Figure 7-10. ProductCategory class diagram

CHAPTER 7 ■ MODELING OBJECTS WITH UML50

7249ch07.qxd 11/13/06 9:17 PM Page 50

Orders
The Orders class will also play a major role in the overall system in that it will contain all the
information about each order that is being processed by the customer when they choose to
check out of the shopping cart and finalize their purchase. The Orders class will have one or
possibly a multitude of products associated with the OrderDetails class, which I will discuss
next. Figure 7-11 shows the Orders class diagram.

Figure 7-11. Orders class diagram

OrderDetails
As mentioned in the Orders section, a single order will have the ability to have one or many
individual associated products. Within the OrderDetails class, this will be where the associ-
ation is conducted. The OrderDetails class will have the link for the individual product or
products that will be added to the finalized order. Figure 7-12 shows the OrderDetails class
diagram.

CHAPTER 7 ■ MODELING OBJECTS WITH UML 51

7249ch07.qxd 11/13/06 9:17 PM Page 51

Figure 7-12. OrderDetails class diagram

Address
The Address class will be an overall general class that will contain only address information.
Having the structure set up in this manner will allow the address class to be associated with
any other class that needs address data, and from the address class perspective, it does not
care who is using this data. This is a technique that will further normalize the data. Figure 7-13
shows the Address class diagram.

Figure 7-13. Address class diagram

ContactInformation
The ContactInformation class will be similar to the previous Address class in that it will con-
tain only contact information for an individual, company, or user. Figure 7-14 shows the
ContactInformation class diagram.

CHAPTER 7 ■ MODELING OBJECTS WITH UML52

7249ch07.qxd 11/13/06 9:17 PM Page 52

Figure 7-14. ContactInformation class diagram

ShoppingCart
The ShoppingCart class will be for the shopping cart within the application. This class will
outline the items that are added to the shopping cart while customers are shopping at the
vineyard’s online store. Figure 7-15 shows the ShoppingCart class diagram.

Figure 7-15. ShoppingCart class diagram

CreditCard
When processing a payment for merchandise, the customer will submit their credit card for
payment. As you can see in the class diagram shown in Figure 7-16, the individual information
of the specific credit card will be contained within the CreditCard class. You will not be storing
any credit card information on the server or database, but the class will be used to pass the
information along within the application.

CHAPTER 7 ■ MODELING OBJECTS WITH UML 53

7249ch07.qxd 11/13/06 9:17 PM Page 53

Figure 7-16. CreditCard class diagram

Summary
You have finished modeling the data for the e-commerce system. As mentioned, this provides
a blueprint for the system in its early stages so you can move on to creating and designing
your database. This is not to say that the modeling is set in stone and cannot be altered later
within the development process. It is merely a preliminary design to establish the foundation,
which can be expanded or tweaked as necessary later.

CHAPTER 7 ■ MODELING OBJECTS WITH UML54

7249ch07.qxd 11/13/06 9:17 PM Page 54

Designing the Database with
SQL Server 2005

You are finally moving along with the case study and beginning to deal with the engineering
aspects of Little Italy Vineyards as opposed to the business side. This chapter will focus on
building the database; this will be based on the model of the database and its objects that you
developed in the previous chapter. In this chapter, I will discuss in detail how exactly you model
and create the database; I’ll provide step-by-step exercises along with a thorough explanation
of the reasons for the modeling. I will also give some insight into why it is important to take the
time in this early phase to pay special attention to designing the database with all its constraints
and relationships.

This chapter will assume you have a moderate amount of experience with relational
databases, specifically SQL Server 2005. Therefore, I will not explain what tables and stored
procedures are and how they work, but I will explain what ones you will create and the reasons
why you’re creating them. If you find yourself needing to reference any fundamental informa-
tion about SQL Server 2005, browse through the help files (more commonly known as Books
Online), which have a wealth of information for you to digest.

The application for the Little Italy Vineyards case study will have several tables that you
will create. This chapter will demonstrate how to create new tables, create new fields within
the tables, and assign data types to the columns. Many of the tables when you are finished will
have significant relationships to one another. Therefore, I’ll also cover creating and managing
the relationships in this chapter.

Please note that I’ll show how to create the database, tables, and relationships through
the SQL Server Management Studio interface. However, I will also supply the actual scripts to
create these elements, so if you’re more advanced, you can execute the scripts to create the
database objects instead of using SQL Server Management Studio. Also, with this book’s down-
loadable source code, the complete database script is available for your convenience. (See the
introduction for more information about the code download.)

Creating the Database
The first order of business is to create the new database within SQL Server 2005. The tool in
which you manage all the activity in SQL Server 2005 is called SQL Server Management Studio.

55

C H A P T E R 8

■ ■ ■

7249ch08.qxd 11/13/06 9:18 PM Page 55

■Note Although the examples in this chapter use SQL Server 2005, it is also possible to use SQL Server
2005 Express, which is free and does not require any licensing. Although SQL Server 2005 Express has its
limitations, it might prove to be a better alternative for some projects.

The following exercise will walk you through creating the database for the Little Italy Vine-
yards case study.

Exercise: Creating the Database

In the exercise, you’ll create a new database within SQL Server 2005 from which you will build the associated
tables and stored procedures:

1. Launch SQL Server Management Studio, and log in to the database engine that you will be utilizing for
development within this project. After logging in to the database, you will see a tree from which you
can expand the details of the database engine within Object Explorer, as shown in Figure 8-1. You can
see that within my development environment, I have several databases that I have already created.

Figure 8-1. Object Explorer

2. Right-click the Databases directory listed directly below the main root in Object Explorer, and choose
New Database, as shown in Figure 8-2.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200556

7249ch08.qxd 11/13/06 9:18 PM Page 56

Figure 8-2. Creating a new database

3. After right-clicking this menu item, you will see the dialog box shown in Figure 8-3 where you can
specify the details of your new database. Enter the name of the database, LittleItalyVineyard, in the
Database Name box. After entering this information, you can keep the remaining default features and
save your addition by clicking the OK button.

Figure 8-3. Naming the new database

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 57

7249ch08.qxd 11/13/06 9:18 PM Page 57

If you would rather create the database by executing a script rather than using the graphical interface, you can
execute the following script, which will provide you with the same result:

CREATE DATABASE LittleItalyVineyard

GO

After clicking the OK button or executing the script, you can use the new database to begin constructing the tables
and stored procedures. At this point, you will see the new database in Object Explorer, as shown in Figure 8-4.

Figure 8-4. Exploring the new database

Once you have expanded the LittleItalyVineyard database, you can view the details of the database, which you’ll
explore in the following sections.

Since you have now created the database, you will proceed to the main focus of the chap-
ter where you actually design the tables within the database.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200558

7249ch08.qxd 11/13/06 9:18 PM Page 58

Creating the Tables
You’ll now focus on adding the tables to the database. You have already modeled the objects
within the system in the previous chapter, so you will use that information to create the tables.
It is important to remember, however, that what you create and model in this chapter might
not necessarily be the final outcome of what is needed.

In the following exercise, you will create the first table in the database. When creating sub-
sequent tables for the database, use this exercise as the model. In the following sections, I’ll
discuss each of the tables in detail by providing an overall outline of each field in each table
along with the data types and whether each field will allow null values. I’ll also show a diagram
of each table.

Exercise: Creating a Table

As mentioned, you can use this exercise to create the first table and then use it as the base steps to create other
tables. Without further ado, create the first table by following these steps:

1. After creating the database, expand the LittleItalyVineyard database within Object Explorer, right-click
the Tables directory, and select New Table, as shown in Figure 8-5.

Figure 8-5. Adding a new table

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 59

7249ch08.qxd 11/13/06 9:18 PM Page 59

After selecting this menu item, you will see the blank database shown in Figure 8-6 where you can
enter the individual details. From this point within the exercise, you can begin constructing the individ-
ual fields.

Figure 8-6. Adding new fields

2. Begin entering the field names and the data types listed in Table 8-1 (in the next section), and indicate
whether the field will allow null values. Figure 8-7 shows the final result of the table.

Figure 8-7. The new fields

3. After you have entered all the field names, defined the data types, and indicated whether each field will
allow null values, you will set the primary key and any additional properties. Specifically, right-click the
ProductID field, and select Set Primary Key, as shown in Figure 8-8.

Figure 8-8. Setting the primary key

4. Now give the ProductID field a property of an autoincrement by clicking the option (Is Identity) and
choosing Yes, as shown in Figure 8-9.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200560

7249ch08.qxd 11/13/06 9:18 PM Page 60

Figure 8-9. Setting the identity property

5. Now you’ll save the table for which you just entered the information. Specifically, click the Save icon,
as shown in Figure 8-10.

Figure 8-10. Saving the new table

6. When executing this action, you will be prompted to enter the name of the table. Enter Products, as
shown in Figure 8-11.

Figure 8-11. Naming the new table

7. Click the OK button to save and execute the actions.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 61

7249ch08.qxd 11/13/06 9:18 PM Page 61

If you want to create the table manually, you can execute the following script:

CREATE TABLE [Products]
(

[ProductID] [int] IDENTITY(1,1) NOT NULL,
[ProductCategoryID] [int] NOT NULL,
[ProductName] [nvarchar](50) NOT NULL,
[ProductImageID] [int] NOT NULL,
[Description] [text] NOT NULL,
[Price] [smallmoney] NOT NULL,

CONSTRAINT [PK_Products] PRIMARY KEY CLUSTERED
(

[ProductID] ASC
)
)

You have created the first table within your database. As mentioned, follow this model when creating all the subse-
quent tables for your database.

Products
The Products table was the first table you created because the system will focus on displaying
and selling the individual products from the Little Italy Vineyards company. Table 8-1 shows
the individual fields within the table.

Table 8-1. Products Table

Autoincrement? Primary Key? Field Name Data Type Allow Null?

Yes Yes ProductID int No

ProductCategoryID int No

ProductName nvarchar(50) No

ProductImageID int No

Description text No

Price smallmoney No

You’ll notice in Table 8-1 that the first field, ProductID, has some properties that specify
the field will be a primary key and will be an identity, or autoincrement, field. This means each
time a new product is inserted into the table, the ProductID field will automatically give itself
a value that is one greater than the previous entry in the table.

Now I’ll discuss the individual fields and explain what their roles will be in the overall
database, along with why you are choosing the specific data types. Figure 8-12 shows the
fields.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200562

7249ch08.qxd 11/13/06 9:18 PM Page 62

Figure 8-12. Products table

ProductID
The ProductID field provides the unique identifying number for a specific product being sold.
This field is the primary key and has an autoincrement property; in addition, as a result of
being a numeric value, its data type is an int, and the field will not allow any null values.

ProductCategoryID
The ProductCategoryID field is a foreign key to the ProductCategory table. This will create
a relationship from the Products table to the ProductCategory table (discussed in the “Pro-
ductCategory” section) in that each product will be associated to a specific category. As
a result, the data type is an int, and the field will not allow any null values.

ProductName
This is probably the most intuitive field in the table. The ProductName field simply holds the
plain-text name of each product in the table. The data type is nvarchar(50), and this field will
not allow any null values. If you find that your products have the tendency to have long names,
you can increase the size of the nvarchar data type field; however, for the purposes of the case
study, the names of the products will be on the shorter side.

ProductImageID
The ProductImageID field is a foreign key to the ProductImages table. I will explain more
about the ProductImages table later in the “ProductImages” section; however, for now just
know that all products will have an associated image to display. The images within the system
will be stored in the database, as opposed to having them in the file system and providing the
path to the images. This field will create the association to the image from the ProductImages
table. As a result, it is an int data type and will not allow null values.

Description
Another quite obvious field in the Products table is the Description field. This, as the name
implies, provides the description of the product. These descriptions can be quite lengthy at
times, so to allow for this, this field will use the text data type and not allow null values.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 63

7249ch08.qxd 11/13/06 9:18 PM Page 63

Price
The Price field holds the monetary value of the cost of each product in the table. Since it will
be a currency value, the data type will be a smallmoney type, and the field not allow null values.

At this point, you might be asking yourself, why not have a field for shipping cost and
sales tax when charging sales tax for the products sold? You will be dealing with these values;
however, they are considered to be aggregate values, and it is a good practice to not store
aggregate values within your database schema. Instead, these values will be automatically
calculated.

ProductCategory
Continuing along with products, the next table you’ll create should be the ProductCategory
table. This table will be a fairly simple table with only a few fields because this table will be
what is known as a lookup table. In other words, it will give specific category names to all the
products while associating them to the Products table with a unique ID. Table 8-2 shows the
specifics of the ProductCategory table.

Table 8-2. ProductCategory Table

Autoincrement? Primary Key? Field Name Data Type Allow Null?

Yes Yes ProductCategoryID int No

ProductCategoryName text No

In the following sections, I’ll discuss the individual fields of the ProductCategory table.
Figure 8-13 shows the fields.

Figure 8-13. ProductCategory table

ProductCategoryID
The ProductCategoryID field is the unique identifier in the table along with being the primary
key. As a result, it will have a data type of int and not allow any null values.

ProductCategoryName
The ProductCategoryName field simply gives the text description of what the category is. This
field can be lengthy, or it can be relatively brief. To allow for maximum scalability, you will use
the data type of text and not allow null values.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200564

7249ch08.qxd 11/13/06 9:18 PM Page 64

Table Script
The following script will create a new table named ProductCategory:

CREATE TABLE [ProductCategory]
(

[ProductCategoryID] [int] IDENTITY(1,1) NOT NULL,
[ProductCategoryName] [text] NOT NULL,

CONSTRAINT [PK_ProductCategory] PRIMARY KEY CLUSTERED
(

[ProductCategoryID] ASC
)

)

ProductImages
The ProductImages table is also brief and contains only a few fields. This table will primarily con-
tain binary data for the images that are associated with the products. The natural question to ask
is, why not simply have an image field with the Products table itself? Well, having a separate table
for the image data will provide greater performance when querying the data from a dedicated
table containing the binary images. Table 8-3 shows the specifics of the ProductImages table.

Table 8-3. ProductImages Table

Autoincrement? Primary Key? Field Name Data Type Allow Null?

Yes Yes ProductImageID int No

ProductImage image No

In the following sections, I’ll discuss the individual fields of the ProductImages table.
Figure 8-14 shows the fields.

Figure 8-14. ProductImages table

ProductImageID
The ProductImageID field is the primary key of the table and has an autoincrement property.
Therefore, keeping with the consistency of the other tables, the data type will be an int, and no
null values will be allowed.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 65

7249ch08.qxd 11/13/06 9:18 PM Page 65

ProductImage
The ProductImage field is the only other field in the table; however, it has some unique char-
acteristics compared to some of the others to this point. This field will contain the binary
information for the image that is associated with the product. As a result of the information
being in its binary form, the data type will be image, and no null values will be allowed.

Table Script
The following script will create the ProductImages table:

CREATE TABLE [ProductImages]
(

[ProductImageID] [int] IDENTITY(1,1) NOT NULL,
[ProductImage] [image] NOT NULL,

CONSTRAINT [PK_ProductImages] PRIMARY KEY CLUSTERED
(
[ProductImageID] ASC
)

)

Orders
The Orders table will be a major portion of the overall database. This table contains all the
information about the items a customer intends to purchase. Table 8-4 shows the specifics of
the Orders table.

Table 8-4. Orders Table

Autoincrement? Primary Key? Field Name Data Type Allow Null?

Yes Yes OrderID int No

TransactionID nvarchar(50) No

EndUserID int No

OrderStatusID int No

OrderDate smalldatetime No

ShipDate smalldatetime Yes

TrackingNumber nvarchar(50) Yes

In the following sections, I’ll discuss the individual fields of the Orders table. Figure 8-15
shows the fields.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200566

7249ch08.qxd 11/13/06 9:18 PM Page 66

Figure 8-15. Orders table

OrderID
The OrderID field is the same as the other primary key fields in the other tables thus far. It will
also have an autoincrement property along with a data type of int, and no null values will be
permitted.

TransactionID
The TransactionID field is a string of characters that is returned from PayPal when processing
the payment. This unique ID allows you to refer to the transaction that has been processed
with PayPal and even issue a refund if necessary.

EndUserID
The EndUserID field simply provides a foreign key of the unique identification of the customer
who has registered an account with the company and provided their contact information. This
ID will reside in the EndUser table, which will be discussed later in the “EndUser” section. Lastly,
the EndUserID field will have a data type of int and not allow any null values.

OrderStatusID
The OrderStatusID field refers to the OrderStatus table and corresponds to the appropriate
status type of the order. The default value for this column is 1, which can be added to the col-
umn properties by entering a value of 1 for the Default Value or Binding property.

OrderDate
The OrderDate field simply contains the date when the order is created. To provide additional
simplicity, this field has a default value that is equal to the current date. Therefore, when a new
order is inserted into the table, the code or stored procedure will not have to specify that
OrderDate field, and as a result, the current date will be taken from what’s found on the server
on which SQL Server 2005 is running. You can do this by specifying the GetDate() function in
the Default Value or Binding column property. As a result, the data type used will be a small-
datetime and not allow null values.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 67

7249ch08.qxd 11/13/06 9:18 PM Page 67

ShipDate
The ShipDate field holds the date of when the order is shipped to the customer. It primarily is
for historic purposes when either the administrator or the customer needs to find out when
their order has been shipped so they can anticipate when it will actually be delivered. This
field actually allows null values because you will not know when the order will ship at the time
the order is created. When this information is prepared, the table will need to be updated for
this date.

TrackingNumber
The TrackingNumber field contains the identifying field that is provided by the shipping com-
pany. This will usually be a long number that also includes alpha characters, so to provide for
this, the data type is an nvarchar(50), and the field will also allow null values. This is because
you will not know the tracking number until the shipping company has arranged to pick up
the order and has provided the company with this information. At that time, the tracking
number will be updated in the table.

Table Script
The following script will create the Orders table:

CREATE TABLE [Orders]
(

[OrderID] [int] IDENTITY(1,1) NOT NULL,
[TransactionID] [nvarchar](50) NOT NULL,
[EndUserID] [int] NOT NULL,
[OrderStatusID] [int] NOT NULL DEFAULT ((1)),
[OrderDate] [smalldatetime] NOT NULL DEFAULT (getdate()),
[ShipDate] [smalldatetime] NULL,
[TrackingNumber] [nvarchar](50) NULL,

CONSTRAINT [PK_Orders] PRIMARY KEY CLUSTERED
(

[OrderID] ASC
)

)

OrderDetails
The OrderDetails table provides all the information regarding the details of a specific order.
Each order that a customer enters has the ability to have as many individual items as they want.
In other words, the customer can purchase one product or can order 25 different products—it
makes no difference. Table 8-5 shows the specifics of the OrderDetails table.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200568

7249ch08.qxd 11/13/06 9:18 PM Page 68

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 69

Table 8-5. OrderDetails Table

Autoincrement? Primary Key? Field Name Data Type Allow Null?

Yes Yes OrderDetailID int No

OrderID int No

ProductID int No

Quantity int No

Figure 8-16 shows the fields of the OrderDetails table.

Figure 8-16. OrderDetails table

OrderDetailID
The OrderDetailID field is the primary key and is an autoincrement that will be the unique
identifier for the associated record within the OrderDetails table.

OrderID
The OrderID field is the foreign key that relates to the Orders table and associates the individ-
ual order detail to the overall order. This field will have a data type of int and will not allow null
values.

ProductID
The ProductID field is the foreign key that relates to the Products table to specify what product
is being added to be eventually purchased. The data type will be int, and the field will not
allow null values.

Quantity
The Quantity field is exactly what its name indicates. It indicates how many products are
being requested for the purchase. It will have a data type of int and not allow any null values,
because at least one product will need to be indicated for the order.

7249ch08.qxd 11/13/06 9:18 PM Page 69

Table Script
The following script will create the OrderDetails table:

CREATE TABLE [OrderDetails]
(

[OrderDetailID] [int] IDENTITY(1,1) NOT NULL,
[OrderID] [int] NOT NULL,
[ProductID] [int] NOT NULL,
[Quantity] [int] NOT NULL,

CONSTRAINT [PK_OrderDetails] PRIMARY KEY CLUSTERED
(

[OrderDetailID] ASC
)

)

OrderStatus
The OrderStatus table provides the associated status names for any order that is placed within
the system. It will have two separate columns: one for the associated ID and the other for the
name of the status. Table 8-6 shows the specifics of the OrderStatus table.

Table 8-6. OrderStatus Table

Autoincrement? Primary Key? Field Name Data Type Allow Null?

Yes Yes OrderStatusID int No

OrderStatusName nvarchar(50) No

Figure 8-17 shows the fields of the OrderStatus table.

Figure 8-17. OrderStatus table

OrderStatusID
The OrderStatusID field serves as the primary key field and has an autoincrement property.
This ID will relate any order’s status to other tables within the database.

OrderStatusName
The OrderStatusName field is the associated text or string name to that of the foreign key field,
OrderStatusID, that will relate to the Orders table. Setting the structure up in this way will allow
for maximum scalability of the different status names. Lastly, the data type is an nvarchar(50),
and no null values will be allowed.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200570

7249ch08.qxd 11/13/06 9:18 PM Page 70

Table Script
The following script will create the OrderStatus table:

CREATE TABLE [OrderStatus]
(

[OrderStatusID] [int] IDENTITY(1,1) NOT NULL,
[OrderStatusName] [nvarchar](50) NOT NULL,

CONSTRAINT [PK_OrderStatus] PRIMARY KEY CLUSTERED
(

[OrderStatusID] ASC
)

)

EndUser
The EndUser table contains all the information regarding the users who will be interacting
within the system. The users will range from administrators to customers, but regardless, to
keep the database and its information normalized, all this information will be contained in
a single table. Table 8-7 shows the specifics of the EndUser table.

Table 8-7. EndUser Table

Autoincrement? Primary Key? Field Name Data Type Allow Null?

Yes Yes EndUserID int No

EndUserTypeID int No

FirstName nvarchar(50) No

LastName nvarchar(50) No

AddressID int No

ContactInformationID int No

Password nvarchar(50) No

IsSubscribed bit No

I’ll discuss the fields of the EndUser table in the following sections; Figure 8-18 shows them.

Figure 8-18. EndUser table

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 71

7249ch08.qxd 11/13/06 9:18 PM Page 71

EndUserID
The EndUserID field serves as the primary key field and has an autoincrement property. This
ID will relate any user to other tables within the database.

EndUserTypeID
The EndUserTypeID field is a foreign key field that will relate to the EndUserType table, which
will specify what type of user the specific user is. Having the structure set up in this way will
allow for maximum scalability of the different types of users. Lastly, the data type is an int, and
no null values will be allowed.

FirstName
The FirstName field is exactly what its name indicates. It will contain the information of the
user’s first name. Therefore, the data type will be an nvarchar(50), and no null values will be
permitted.

LastName
The LastName field is exactly what its name indicates. It will contain the information of the
user’s last name. Therefore, the data type will be an nvarchar(50), and no null values will be
permitted.

AddressID
The AddressID field will contain the foreign key related to the Address table in the database.
I will discuss the Address table in the “Address” section. The data type is an int, and no null
values will be allowed.

ContactInformationID
The ContactInformationID field contains the foreign key related to the ContactInformation
table within the database. I’ll discuss the ContactInformation table in the “ContactInforma-
tion” section. Therefore, the data type will be an int, and no null values will be allowed.

Password
The Password field contains the password that the user supplies to get access to their account.
Their password will be encrypted within the database to provide additional security. As
a result, the data type used will be an nvarchar(50) and will not allow null values.

IsSubscribed
The IsSubscribed field provides for the value that is either a 0 or a 1. This value will be set
when a customer or user registers for a new account; they can elect to subscribe to the
newsletter.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200572

7249ch08.qxd 11/13/06 9:18 PM Page 72

Table Script
The following script will create the EndUser table:

CREATE TABLE [EndUser]
(

[EndUserID] [int] IDENTITY(1,1) NOT NULL,
[EndUserTypeID] [int] NOT NULL,
[FirstName] [nvarchar](50) NOT NULL,
[LastName] [nvarchar](50) NOT NULL,
[AddressID] [int] NOT NULL,
[ContactInformationID] [int] NOT NULL,
[Password] [nvarchar](50) NOT NULL,
[IsSubscribed] [bit] NOT NULL,

CONSTRAINT [PK_EndUser] PRIMARY KEY CLUSTERED
(

[EndUserID] ASC
)

)

EndUserType
The EndUserType table will be a brief lookup table to specify the different roles a user can have
and to provide different categorizations. Table 8-8 shows the specifics of the EndUserType table.

Table 8-8. EndUserType Table

Autoincrement? Primary Key? Field Name Data Type Allow Null?

Yes Yes EndUserTypeID int No

TypeName nvarchar(50) No

I’ll discuss the fields of the EndUserType table in the following sections; Figure 8-19
shows them.

Figure 8-19. EndUserType table

EndUserTypeID
The EndUserTypeID field serves as the primary key field and has an autoincrement property.
Its data type will be an int, and the field will not allow null values.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 73

7249ch08.qxd 11/13/06 9:18 PM Page 73

TypeName
The TypeName field provides the text description of what the EndUserTypeID will be. This
descriptive field will usually have the name Administrator, Customer, or perhaps Vendor.

Table Script
The following script will create the EndUserType table:

CREATE TABLE [EndUserType]
(

[EndUserTypeID] [int] IDENTITY(1,1) NOT NULL,
[TypeName] [nvarchar](50) NOT NULL,

CONSTRAINT [PK_EndUserType] PRIMARY KEY CLUSTERED
(

[EndUserTypeID] ASC
)

)

Address
The Address table contains all the address information. It will contain address information
only and can be used for users or any other part of the system or database that needs to
include address information. For the purposes of the case study, it will mostly be used for the
EndUser table. This structure is a technique used to further normalize the data within the
schema of the database. Table 8-9 shows the specifics of the Address table.

Table 8-9. Address Table

Autoincrement? Primary Key? Field Name Data Type Allow Null?

Yes Yes AddressID int No

AddressLine nvarchar(50) No

AddressLine2 nvarchar(50) Yes

City nvarchar(50) No

State nvarchar(50) No

PostalCode nvarchar(50) No

I’ll discuss the fields of the Address table in the following sections; Figure 8-20 shows them.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200574

7249ch08.qxd 11/13/06 9:18 PM Page 74

Figure 8-20. Address table

AddressID
The AddressID field is the primary key and has an autoincrement property. Therefore, the data
type will be int, and the field will not allow null values.

AddressLine
The AddressLine field contains the information for the street number and the street name of
an entity’s address. For instance, “105 Main St.” could be a value that is found in the table.
Therefore, the data type is an nvarchar(50) and does not allow null values.

AddressLine2
The AddressLine2 field contains the information for addresses that sometimes have additional
information. For instance, an address might be “100 South Main Blvd.” but might also need to
specify a suite or maybe even an apartment number. Therefore, information found in this field
can often resemble that of “Suite 200” or “Apartment Number 4D.” As a result, the data type is
an nvarchar(50), and since only some addresses will have this additional information, null val-
ues will be allowed.

City
The City field specifies the name of the city within the full address. This will contain the full
text, such as “Pittsburgh” or “Tampa Bay.” As a result, the data type will be an nvarchar(50),
and the field will not allow null values.

State
The State field specifies the name of the state within the full address. This will contain the full
text, such as “Pennsylvania” or “Florida.” As a result, the data type will be an nvarchar(50), and
the field will not allow null values.

PostalCode
The PostalCode field specifies the value of the postal code (or the ZIP code) for the full address.
An example is 15222 or 15282; therefore, this field will have a data type of nvarchar(50) and not
allow null values.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 75

7249ch08.qxd 11/13/06 9:18 PM Page 75

Table Script
The following script will create the Address table:

CREATE TABLE [Address]
(

[AddressID] [int] IDENTITY(1,1) NOT NULL,
[AddressLine] [nvarchar](50) NOT NULL,
[AddressLine2] [nvarchar](50) NULL,
[City] [nvarchar](50) NOT NULL,
[State] [nvarchar](50) NOT NULL,
[PostalCode] [nvarchar](50) NOT NULL,

CONSTRAINT [PK_Address] PRIMARY KEY CLUSTERED
(

[AddressID] ASC
)

)

ContactInformation
The ContactInformation table is similar to that of the Address table in the database. However,
instead of containing address information for a specific entity, it specifies contact information
for an entity to keep with the normalization technique mentioned within the Address table
description. By utilizing this technique, all contact information can be in one table and be
associated with any type of entity. For the purposes of the case study, the users are the only
entities that have related contact information. Table 8-10 shows the specifics of the
ContactInformation table.

Table 8-10. ContactInformation Table

Autoincrement? Primary Key? Field Name Data Type Allow Null?

Yes Yes ContactInformationID int No

Phone nvarchar(50) Yes

Phone2 nvarchar(50) Yes

Fax nvarchar(50) Yes

Email nvarchar(50) No

I’ll discuss the fields of the ContactInformation table in the following sections; Figure 8-21
shows them.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200576

7249ch08.qxd 11/13/06 9:18 PM Page 76

Figure 8-21. ContactInformation table

ContactInformationID
The ContactInformationID field serves as the primary key and has the autoincrement property.
Therefore, it will have a data type of int and not allow null values.

Phone
The Phone field contains the raw numbers of the primary phone number of the overall
contact information entity. There will be no formatting of the phone number because any
formatting will be performed on the presentation layer side of the system. It will have a data
type of nvarchar(50) and allow null values.

Phone2
The Phone2 field contains the raw numbers of a secondary phone number of the overall con-
tact information entity. Perhaps this is a cellular or mobile phone number. However, not all
entities will have a secondary number; therefore, it will allow null values and have a data type
of nvarchar(50).

Fax
The Fax field specifies the raw numbers of an entity’s fax. Not every entity will have an associ-
ated fax; therefore, this field will allow null values and have a data type of nvarchar(50).

Email
The Email field contains the e-mail address of the entity’s contact information. It will show the
e-mail address in plain text; therefore, the data type will be an nvarchar(50), and no null values
will be permitted.

Table Script
The following script will create the ContactInformation table:

CREATE TABLE [ContactInformation]
(

[ContactInformationID] [int] IDENTITY(1,1) NOT NULL,
[Phone] [nvarchar](50) NULL,

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 77

7249ch08.qxd 11/13/06 9:18 PM Page 77

[Phone2] [nvarchar](50) NULL,
[Fax] [nvarchar](50) NULL,
[Email] [nvarchar](50) NOT NULL,

CONSTRAINT [PK_ContactInformation] PRIMARY KEY CLUSTERED
(

[ContactInformationID] ASC
)

)

ShoppingCart
The ShoppingCart table contains all the information from when customers are browsing
through the product catalog and then adding a specific item to the shopping cart to eventually
purchase. Table 8-11 shows the specifics of the ShoppingCart table.

Table 8-11. ShoppingCart Table

Autoincrement? Primary Key? Field Name Data Type Allow Null?

Yes Yes ShoppingCartID int No

CartGUID Nvarhcar(50) No

Quantity int No

ProductID int No

DateCreated smalldatetime No

I’ll discuss the fields of the ShoppingCart table in the following sections; Figure 8-22
shows them.

Figure 8-22. ShoppingCart table

ShoppingCartID
The ShoppingCartID field is the primary key of the table and has an autoincrement property.
Therefore, the data type will be an int, and no null values will be allowed.

CartGuid
The CartGuid field is a global unique identifier (GUID) that is created from the ASP.NET code
and then passed along to be inserted into the database. This identifier will allow for a customer
to have all the items that they have placed within the shopping cart be identified as theirs.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200578

7249ch08.qxd 11/13/06 9:18 PM Page 78

Quantity
The Quantity field holds the value of how many of the individual products the customer
would like when adding them to the shopping cart. As a result of the values being a single
number, the data type will be an int, and the field not allow null values, because at least
a value of 1 must be entered.

ProductID
The ProductID field is a foreign key to the Products table to specify and relate a specific prod-
uct item to the cart. This will have a data type of an int and not allow null values.

DateCreated
The DateCreated field provides a date stamp of when the user creates the shopping cart by
adding products. The value of the date will be generated by the GetDate() function placed
within the Default Value property. This will have a data type of smalldatetime and will have
a default value of using the current date, which will be extracted from the server’s date on
which SQL Server 2005 is installed and running. This field will be important when processing
abandoned shopping carts, which will be explained in greater detail in Chapter 17.

Table Script
The following script will create the ShoppingCart table:

CREATE TABLE [ShoppingCart]
(

[ShoppingCartID] [int] IDENTITY(1,1) NOT NULL,
[CartGUID] [nvarchar](50) NOT NULL,
[Quantity] [int] NOT NULL,
[ProductID] [int] NOT NULL,
[DateCreated] [smalldatetime] NOT NULL DEFAULT (getdate()),

CONSTRAINT [PK_ShoppingCart] PRIMARY KEY CLUSTERED
(
[ShoppingCartID] ASC

)
)

Creating the Relationships
As mentioned earlier within the chapter, several of the tables will have distinct relationships
with each other. At this point, you have created each of the necessary tables along with their
respective data types and associated properties. Similar to the methodology earlier explained
when creating the tables, you will follow a single exercise to create a single relationship between
two tables. You can then use this as a model to follow when creating the other relationships.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 79

7249ch08.qxd 11/13/06 9:18 PM Page 79

Exercise: Creating a Relationship

This exercise will outline how to create a relationship between two tables. A table might have a single relationship
or multiple relationships. In either case, utilize this exercise to model all the relationships for the tables within the
database:

1. Within Object Explorer, expand the Tables node, and choose the table from which you want to create
a relationship. For this exercise, you will be dealing with the OrderDetails table. Therefore, right-click
the OrderDetails table, and choose Modify, as shown in Figure 8-23.

Figure 8-23. Modifying a table

After choosing Modify, you will see the table details, as shown in Figure 8-24.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200580

7249ch08.qxd 11/13/06 9:18 PM Page 80

Figure 8-24. The table columns

2. From here, click the Relationships icon to view the current relationships, as shown in Figure 8-25.

Figure 8-25. The relationships

3. After clicking the Relationships icon, you will see the dialog box shown in Figure 8-26 where you can
click the Add button.

Figure 8-26. Foreign key relationships

4. In the Foreign Key Relationship dialog box, expand the Tables and Columns Specification property, as
shown in Figure 8-27.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 81

7249ch08.qxd 11/13/06 9:18 PM Page 81

Figure 8-27. Adding a relationship

5. After clicking the ellipsis, you will be presented with the Tables and Columns dialog box, as shown in
Figure 8-28.

Figure 8-28. Setting the relationship

6. From the drop-down list on the left, choose the Products table, and then select the ProductID field from
within the OrderDetails table, as shown in Figure 8-29.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200582

7249ch08.qxd 11/13/06 9:18 PM Page 82

Figure 8-29. Saving the relationship

7. Upon ensuring that both the ProductID selections are made in both the columns, click the OK button to
execute the changes. You have created the first relationship.

As an alternative to creating the relationship using the graphical user interface, you can run the following script to
create the relationship:

ALTER TABLE [OrderDetails] WITH CHECK ADD CONSTRAINT
[FK_OrderDetails_Products] FOREIGN KEY([ProductID])
REFERENCES [Products] ([ProductID])

Follow this model for creating all the subsequent relationships for the other tables within the database that I’ll
outline in the remainder of the chapter.

OrderDetails
The OrderDetails table has two relationships. These relationships are with OrderID and
ProductID from the Orders and Products tables, respectively. Table 8-12 shows the specifics of
the OrderDetails relationships.

Table 8-12. OrderDetails Relationships

Constraint Name Foreign Key Reference Table Reference Field

FK_OrderDetails_Orders OrderID Orders OrderID

FK_OrderDetails_Products ProductID Products ProductID

FK_OrderDetails_Orders
The first constraint allows only an existing OrderID from the Orders table within the OrderID
field of the OrderDetails table.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 83

7249ch08.qxd 11/13/06 9:18 PM Page 83

FK_OrderDetails_Products
This constraint allows only an existing product within the ProductID field of the OrderDetails
table.

Relationship Script
The following script will add the constraint:

ALTER TABLE [OrderDetails] WITH CHECK ADD CONSTRAINT [FK_OrderDetails_Orders]
FOREIGN KEY([OrderID])
REFERENCES [Orders] ([OrderID])

Orders
The Orders table has only a single constraint or relationship. Examine Table 8-13; an explana-
tion follows.

Table 8-13. Orders Relationships

Constraint Name Foreign Key Reference Table Reference Field

FK_Orders_OrderStatus OrderStatusID OrderStatus OrderStatusID

FK_Orders_OrderStatus
This constraint allows for a status type within the Orders table to be that of an existing status
ID only.

Relationship Script
The following script will create the constraint:

ALTER TABLE [Orders] WITH CHECK ADD CONSTRAINT [FK_Orders_OrderStatus]
FOREIGN KEY([OrderStatusID])
REFERENCES [OrderStatus] ([OrderStatusID])

EndUser
The EndUser table has three separate constraints and relationships, as described in Table 8-14.

Table 8-14. EndUser Relationships

Constraint Name Foreign Key Reference Table Reference Field

FK_EndUser_Address AddressID Address AddressID

FK_EndUser_ ContactInformationID ContactInformation ContactInformationID
ContactInformation

FK_EndUser_ EndUserTypeID EndUserType EndUserTypeID
EndUserType

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200584

7249ch08.qxd 11/13/06 9:18 PM Page 84

FK_EndUser_Address
This relationship ensures that the AddressID field will be that of an existing value within the
Address table.

FK_EndUser_ContactInformation
This relationship ensures that the ContactInformationID field will be that of an existing value
within the ContactInformation table.

FK_EndUser_EndUserType
This relationship ensures that the EndUserTypeID field will be that of an existing value within
the EndUserType table.

Relationship Script
The following script will create the constraints:

ALTER TABLE [EndUser] WITH CHECK ADD CONSTRAINT [FK_EndUser_Address]
FOREIGN KEY([AddressID])
REFERENCES [Address] ([AddressID])

GO

ALTER TABLE [EndUser] WITH CHECK ADD CONSTRAINT [FK_EndUser_ContactInformation]
FOREIGN KEY([ContactInformationID])
REFERENCES [ContactInformation] ([ContactInformationID])

GO

ALTER TABLE [EndUser] WITH CHECK ADD CONSTRAINT [FK_EndUser_EndUserType]
FOREIGN KEY([EndUserTypeID])
REFERENCES [EndUserType] ([EndUserTypeID])

Products
The Products table has two individual relationships, as described in Table 8-15.

Table 8-15. Products Relationships

Constraint Name Foreign Key Reference Table Reference Field

FK_Products_ ProductCategoryID ProductCategory ProductCategoryID
ProductCategory

FK_Products_ ProductImageID ProductImages ProductImageID
ProductImages

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 85

7249ch08.qxd 11/13/06 9:18 PM Page 85

FK_Products_ProductCategory
This relationship ensures that the ProductCategoryID field will be that of an existing value
within the ProductCategory table.

FK_Products_ProductImages
This relationship ensures that the ProductImageID field will be that of an existing value within
the ProductImages table.

Relationship Script
The following script will create the constraints:

ALTER TABLE [Products] WITH CHECK ADD CONSTRAINT [FK_Products_ProductCategory]
FOREIGN KEY([ProductCategoryID])
REFERENCES [ProductCategory] ([ProductCategoryID])

GO

ALTER TABLE [Products] WITH CHECK ADD CONSTRAINT [FK_Products_ProductImages]
FOREIGN KEY([ProductImageID])
REFERENCES [ProductImages] ([ProductImageID])

ShoppingCart
The ShoppingCart table has a single relationship, as described in Table 8-16.

Table 8-16. ShoppingCart Relationships

Constraint Name Foreign Key Reference Table Reference Field

FK_ShoppingCart_Products ProductID Products ProductID

FK_ShoppingCart_Products
This relationship ensures that the ProductID field will be that of an existing value within the
Products table.

Relationship Script
The following script will create the constraint:

ALTER TABLE [ShoppingCart] WITH CHECK ADD CONSTRAINT [FK_ShoppingCart_Products]
FOREIGN KEY([ProductID])
REFERENCES [Products] ([ProductID])

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200586

7249ch08.qxd 11/13/06 9:18 PM Page 86

Writing the Type Inserts
The type inserts for the database are a series of insert statements that will populate specific
tables with values that will be required. For instance, you’ll have a series of product categories
along with different types with which a user will be associated.

The following sections show the insert statements that you’ll need to execute against the
database.

EndUserType
The following script will create two records within the EndUserType table:

INSERT INTO EndUserType (TypeName) VALUES ('Customer')
INSERT INTO EndUserType (TypeName) VALUES ('Administrator')

OrderStatus
The following script will create the records within the OrderStatus table:

INSERT INTO OrderStatus (OrderStatusName) VALUES ('Pending')
INSERT INTO OrderStatus (OrderStatusName) VALUES ('Shipped')

ProductCategory
The following script will create the records within the ProductCategory table:

INSERT INTO ProductCategory (ProductCategoryName) VALUES('Appetizer Wine')
INSERT INTO ProductCategory (ProductCategoryName) VALUES('White Wine')
INSERT INTO ProductCategory (ProductCategoryName) VALUES('Red Wine')
INSERT INTO ProductCategory (ProductCategoryName) VALUES('Desert Wine')
INSERT INTO ProductCategory (ProductCategoryName) VALUES('Glasses')
INSERT INTO ProductCategory (ProductCategoryName) VALUES('Accessories')
INSERT INTO ProductCategory (ProductCategoryName) VALUES('Membership')

Examining the Complete Database
You have completed the database setup and design for the LittleItalyVineyard database, its
tables, and all the necessary relationships between those tables. At this point, it is helpful to
look at the entire picture from a macro viewpoint. In other words, examine Figure 8-30, which
shows all the tables along with the constraints.

■Note As a result of the number of tables, you may not be able to see all of the details in Figure 8-30.
However, within the book’s downloadable code and accompanying files, you’ll find a Portable Document For-
mat (PDF) file of this database diagram.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 87

7249ch08.qxd 11/13/06 9:18 PM Page 87

Figure 8-30. The database diagram

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 200588

7249ch08.qxd 11/13/06 9:18 PM Page 88

Summary
This chapter showed you how to create the LittleItalyVineyard database along with the individ-
ual tables within the database. Then you established the relationships between certain tables.

One important aspect to remember is that although you have completed most of the work
for the database, you might alter the database later in the development phase, based on details
you flesh out during the development process. This practice is totally acceptable; however, you
have established the main schema of the database, so any changes will be minor—more like
tweaking than reconstructing the major facets of the database foundation.

CHAPTER 8 ■ DESIGNING THE DATABASE WITH SQL SERVER 2005 89

7249ch08.qxd 11/13/06 9:18 PM Page 89

7249ch08.qxd 11/13/06 9:18 PM Page 90

Using Visual Studio 2005

Continuing with the engineering side of the case study, in this chapter I’ll introduce the
main tool you’ll use to develop the web application. This tool, as you might have already
guessed, is Microsoft Visual Studio 2005. It is the de facto Microsoft tool to use when develop-
ing .NET applications.

In this chapter, you’ll focus on setting up your environment within Visual Studio 2005.
You’ll follow a formalized approach to organize the web pages and all the other files within the
Visual Studio solution and project. As in the previous chapter, I’ll assume you have previous
experience using Visual Studio 2005 to develop web applications. Although I’ll demonstrate
specific instructions, this chapter is not meant to be a beginner’s guide to Visual Studio 2005.

I’ll first discuss the reasoning for taking a structured approach to the solution.

Understanding the Case Study’s Approach
Prior to walking you through the individual techniques for organizing your source code, I’ll
explain why the Visual Studio 2005 solution and projects will be laid out in the fashion discussed
in this chapter. It is true that you can build a web application, without any complications or
flaws, without following the methodology in this book. However, you should keep two issues
in mind as you work on your individual projects.

The first reason for having such a structured approach to setting up your solution and
project files is continuity. As your application progresses, you’ll need to manage a great deal
of code, either by yourself or with a team of developers. Establishing the methodology at
the beginning of the process means other developers who come to the project later can main-
tain the application and implement enhancements.

The second main reason behind the proposed structure is the inevitable fact that you will
spend a significant amount of time debugging your application throughout its lifetime. As
a result, having an organized layout will minimize the time expended when looking for the
specific area or section of code you need to troubleshoot. The overall organization will allow
for a lot less time expended when the troubleshooting begins. Any developer or engineer will
be able to make an educated guess as to where the bug might be occurring or simply where
the activity can be trapped to gain further information.

91

C H A P T E R 9

■ ■ ■

7249ch09.qxd 11/13/06 9:18 PM Page 91

Understanding the Case Study’s Solution
The first piece to the puzzle is the solution file. The solution is the overall container for all the
projects, files, and other items that make up the web application as a whole. Usually when cre-
ating a new website within Visual Studio 2005, you will create a solution file. However, you can
set whether you want this to be included.

For the purposes of the case study, you’ll organize your structure a little differently by not
having only a single project with all the code. Therefore, in the following exercise, you’ll see
exactly how to create the solution.

Exercise: Creating the Solution

In this exercise, you’ll create the solution within Visual Studio 2005 that will contain the remaining items. Follow
these steps:

1. The first order of business is to open a new instance of Visual Studio 2005. Once Visual Studio 2005 is
open, you can see the Start Page screen and any recent projects you have created, as shown in
Figure 9-1.

CHAPTER 9 ■ USING VISUAL STUDIO 200592

Figure 9-1. Opening Visual Studio 2005

2. Select File ➤ New ➤ Project, as shown in Figure 9-2.

7249ch09.qxd 11/13/06 9:18 PM Page 92

Figure 9-2. Creating a new project

3. After selecting Project, you will see the New Project dialog box.

4. Navigate to the Other Project Types list within the Project Types tree, and choose Visual Studio Solu-
tions. Select Blank Solution from the Templates section located on the right side of the dialog box, as
shown in Figure 9-3.

Figure 9-3. New Project dialog box

CHAPTER 9 ■ USING VISUAL STUDIO 2005 93

7249ch09.qxd 11/13/06 9:18 PM Page 93

5. Now you need to enter two pieces of information. The first piece of information is the name of the solu-
tion; enter LittleItalyVineyards. For the second piece of information, browse to the location on your
hard drive where you want to set up your solution file and the subsequent source code. Finally, notice
that the option Create Directory for Solution is checked. This is the desired option. The New Project dia-
log box will now look like Figure 9-4.

Figure 9-4. Finalized New Project dialog box

6. Click the OK button to execute and save the new solution file.

7. You can now view the new solution within Solution Explorer in Visual Studio 2005, as shown in Figure 9-5.

CHAPTER 9 ■ USING VISUAL STUDIO 200594

7249ch09.qxd 11/13/06 9:18 PM Page 94

Figure 9-5. The new solution

At this point, you have set up your solution; however, it doesn’t contain any projects at this time. But at least you
have the foundation of the container that will hold all your source code for the application.

Creating the Web Project
Since the solution is now set up, you can add the next vital piece to the overall puzzle; in the
following exercise, you’ll create the web portion, or presentation layer, of the solution that
contains the actual website project. The web project will contain all the web pages and web
forms, a directory for images, all the scripts, and all the style sheets.

Exercise: Adding the Web Project to the Solution

In this exercise, you will resume working with the solution file within Visual Studio 2005. Specifically, you’ll add the
Web directory to the solution to continue setting up your project. Follow these steps:

1. Return to the Visual Studio 2005 solution you created in the previous exercise. Continue to Solution
Explorer, and right-click the solution. Then select Add ➤ New Solution Folder, as shown in Figure 9-6.

CHAPTER 9 ■ USING VISUAL STUDIO 2005 95

7249ch09.qxd 11/13/06 9:18 PM Page 95

Figure 9-6. Adding a new solution folder

2. The new folder will appear below the main solution file within Solution Explorer. Rename the new
folder to Web, as shown in Figure 9-7.

Figure 9-7. Renaming the new solution folder

■Note Adding a new solution folder does not create a directory or folder within the file system. It creates
only a virtual directory within the Visual Studio 2005 solution infrastructure as noted by the faded dotted-line
representation of the solution folder.

3. Right-click the newly added web folder, and then select Add ➤ New Web Site, as shown in Figure 9-8.

CHAPTER 9 ■ USING VISUAL STUDIO 200596

7249ch09.qxd 11/13/06 9:18 PM Page 96

Figure 9-8. Adding a new website

4. Now you need to enter some additional setup information in the Add New Web Site dialog box. Specifi-
cally, in the Add New Web Site dialog box, select ASP.NET Web Site located in the Visual Studio Installed
Templates list, and then select the File System option for the location and Visual C# for the language,
as shown in Figure 9-9.

Figure 9-9. Add New Web Site dialog box

CHAPTER 9 ■ USING VISUAL STUDIO 2005 97

7249ch09.qxd 11/13/06 9:18 PM Page 97

5. Next, you’ll select the location for the website. Specifically, click the Browse button, and choose the
main directory, LittleItalyVineyards, you created earlier. At this point, you’ll create a subdirectory named
Web. Append this in the Folder box, as shown in Figure 9-10.

Figure 9-10. Choosing a new location

6. Click the Open button, and you will be prompted with the message shown in Figure 9-11.

Figure 9-11. Creating the subdirectory

7. When prompted to create the new folder, click the Yes button. The new subdirectory will be created,
and you will be returned to the Add New Web Site dialog box, which will show the newly selected sub-
directory and the full path in which to create the new website, as shown in Figure 9-12.

CHAPTER 9 ■ USING VISUAL STUDIO 200598

7249ch09.qxd 11/13/06 9:18 PM Page 98

Figure 9-12. Finalizing the new website

8. Now that you have entered all the information, click the OK button. The new website will be created
with the information you have specified. You can now see the new site located in the Web folder in
Solution Explorer, as shown in Figure 9-13.

Figure 9-13. The new website

The exercise is now complete, and you have successfully added the web project portion of the Visual Studio 2005
solution.

Expanding the Web Project
Now that you have created the first project within the solution, you cannot stop there; obvi-
ously, you will need to expand upon what you have created so far. In this chapter, I will not
discuss or demonstrate the exact web forms needed for the case study project. I will discuss

CHAPTER 9 ■ USING VISUAL STUDIO 2005 99

7249ch09.qxd 11/13/06 9:18 PM Page 99

this in detail in the soon-to-follow chapters. However, in this chapter, you need to create addi-
tional directories and complete some organization so that you are fully prepared when the time
comes to add the necessary web forms.

As mentioned, you will be expanding the web project in the solution with additional
directories. In the following sections, you will get a brief overview of each of these directories,
and then I’ll present another exercise so you can expand the web project.

Images
The Images directory will contain all the images incorporated in the Hypertext Markup Language
(HTML) design of the application. The Images directory can also contain additional subdirec-
tories to further organize specific images or image groups.

Scripts
The Scripts directory will contain JavaScript files (the *.js files). These files will contain all the
necessary JavaScript functions that will be used within the web application. Common examples
of JavaScript functions include opening new windows or pop-up windows, closing windows,
and prompting a user to delete an item from the application. Any web page that needs to
incorporate JavaScript will be able to link to the JavaScript files and subsequently reference
the functions.

CSS
The name of the CSS directory is an abbreviation for cascading style sheet. This directory con-
tains any style sheet files (the *.css files). In these files, you’ll enter all the styles that are
subsequently used to style the HTML within the application. Each web page will be able to
link to the style sheets located in the CSS directory.

Admin
The Admin directory will contain all the web pages that comprise the administrative section
of the web application. I will discuss this section of the application in more detail later in the
book, but for the current purposes, it is important to understand what you will eventually put
in this directory. The administrative section will be password protected and will allow only
designated personnel access to alter information within the website. This information will
come in the form of adding products, altering information such as pricing, and ultimately
managing the orders and purchases made by the customers.

The following exercise will demonstrate how to add separate folders to the web project.

Exercise: Expanding the Web Project

In this exercise, you will expand the web project in the solution you created previously. Upon completion, you will
be prepared to add your code and HTML to the project, which you’ll do later in the book. Follow these steps:

1. Proceed to the web project you created within the LittleItalyVineyards solution. In Solution Explorer,
right-click the web project, and select New Folder, as shown in Figure 9-14.

CHAPTER 9 ■ USING VISUAL STUDIO 2005100

7249ch09.qxd 11/13/06 9:18 PM Page 100

Figure 9-14. New Folder menu item

2. This creates a new folder within the web project under the solution; it has a default name of NewFolder 1.
Change the name of this new folder to Images, as shown in Figure 9-15.

Figure 9-15. The Images folder

CHAPTER 9 ■ USING VISUAL STUDIO 2005 101

7249ch09.qxd 11/13/06 9:18 PM Page 101

3. Repeat this process to add new folders to the web project named Scripts, CSS, and Admin, as shown
in Figure 9-16, Figure 9-17, and Figure 9-18.

Figure 9-16. The Scripts folder

Figure 9-17. The CSS folder

Figure 9-18. The Admin folder

CHAPTER 9 ■ USING VISUAL STUDIO 2005102

7249ch09.qxd 11/13/06 9:18 PM Page 102

After adding all the new folders, the web project will resemble Figure 9-19.

Figure 9-19. The folder structure

The web project within the solution is now organized and ready to be added to, which you’ll do later in this book
when you begin writing the code and integrating the HTML for the application. Lastly, note that the folders you
created are in fact physical folders as opposed to the virtual folders created earlier.

Adding the Class Libraries
So far, you have set up the web project within your solution so that it will be prepared when
you begin coding. One piece to the puzzle remains: the class library section within the solu-
tion for Visual Studio 2005.

A class library with regard to setting up a Visual Studio solution is a specific type of proj-
ect where the ultimate output is an assembly with a .dll file extension. These class libraries
process the data, business logic, or operational tasks such as sending an e-mail or entering
items in a message queue. They do not deal with displaying information or images in the
browser; instead, they deal with the processes that occur behind the scenes and that ulti-
mately deliver this information to the presentation layer or browser. The flow of information
can also occur in the reverse order; in other words, it can take information from the browser
or user input and deliver it to the database, use it in data processing, or use it to execute
a business logic rule.

In the following sections of the chapter, you will add the individual class library projects
to the Visual Studio solution and organize the file structure in a similar fashion as the web
project. The individual class libraries you will add are called Common, DataAccess, Opera-
tional, and BusinessLogic. I’ll give you an overview of each of these, followed by an exercise
demonstrating the exact procedures involved.

Common
The Common class library will contain all the main objects within the system as classes, which
is why it’s called Common. With regard to the case study project, some examples of the classes
will be Products, Users, Orders, Address, and ShoppingCart. These classes will be modeled
directly from the previous class diagrams you created in Chapter 7.

CHAPTER 9 ■ USING VISUAL STUDIO 2005 103

7249ch09.qxd 11/13/06 9:18 PM Page 103

DataAccess
The DataAccess class library will contain the section that processes all the data and transac-
tions to the database. This will be in the form of selecting data, inserting data, deleting data,
and updating data. The code contained here will actually invoke the stored procedures within
the SQL Server database to perform all the data processing.

Operational
The Operational class library will contain all the functionality that executes operations that
do not directly involve the database within the system. Examples of this type of operability
include sending e-mail messages, processing a report, performing system input/output (IO),
and connecting to and communicating with any web services that the application utilizes.

BusinessLogic
The BusinessLogic class library will contain the functionality that processes individual business
rules that are specific to the system as a whole. This will serve as a bridge from the presentation
layer or web project section that will maintain the flow of the data to all the back-end process-
ing and will ultimately return information to the user.

The following exercise will be the beginning of building the n-tier architecture of your
application because you’ll create the individual class library projects and individual class.

Exercise: Creating the Class Libraries

In this exercise, you’ll add the class library projects to your existing Visual Studio 2005 solution that you have been
organizing thus far. Follow these steps:

1. Return to the Visual Studio 2005 solution, and right-click the solution to add a new solution folder.
Name the new folder Class Libraries, as shown in Figure 9-20.

Figure 9-20. The Class Libraries solution folder

CHAPTER 9 ■ USING VISUAL STUDIO 2005104

7249ch09.qxd 11/13/06 9:18 PM Page 104

2. Navigate in Windows Explorer to the root directory where you saved all the Visual Studio files, and add
a new directory named Class Libraries. This is where you will be saving all the subsequent class
libraries. Then right-click the newly added Class Libraries solution folder within the Visual Studio solu-
tion, and choose Add ➤ New Project, as shown in Figure 9-21.

Figure 9-21. Adding a new project

3. You will now see the Add New Project dialog box. In this dialog box, you will need to specify additional
information. First select Visual C# from the Project Types tree on the left side, and then select the Class
Library template from the Visual Studio Installed Templates section. Change the name of the project
being added to LittleItalyVineyard.Common, and finally browse to the location of the subdirectory you
created previously named Class Libraries. After entering this information, the Add New Project dialog
box will resemble Figure 9-22.

CHAPTER 9 ■ USING VISUAL STUDIO 2005 105

7249ch09.qxd 11/13/06 9:18 PM Page 105

Figure 9-22. Configuring the new project information

4. Finally, click the OK button to create the new class library. Upon the new class library being created,
you will be able to view the newly added item, as shown in Figure 9-23.

Figure 9-23. The Common class library

Notice that the new class library automatically created a new class named Class1. You can keep this
class for the time being; however, in a future chapter, you will either delete or rename this class.

CHAPTER 9 ■ USING VISUAL STUDIO 2005106

7249ch09.qxd 11/13/06 9:18 PM Page 106

5. Continue adding the remaining class libraries that were discussed prior to this exercise, namely, the
DataAccess, Operational, and BusinessLogic class libraries, keeping the same naming convention used
with the Common class library. Figure 9-24, Figure 9-25, and Figure 9-26 show these libraries.

Figure 9-24. The DataAccess class library

Figure 9-25. The Operational class library

CHAPTER 9 ■ USING VISUAL STUDIO 2005 107

7249ch09.qxd 11/13/06 9:18 PM Page 107

Figure 9-26. The BusinessLogic class library

The Visual Studio 2005 project and solution is now prepared for you to use later within the case study in this book.

Summary
You have finished setting up and organizing the Visual Studio 2005 solution for your applica-
tion. You are now prepared to establish the overall system’s architecture and how each layer of
the architecture will be implemented in the Visual Studio solution.

CHAPTER 9 ■ USING VISUAL STUDIO 2005108

7249ch09.qxd 11/13/06 9:18 PM Page 108

Architecture

The fourth part of this book is where you’ll implement the architecture in order to establish

the foundation of your complete system. In the following chapters, I’ll explain each layer in

detail. I’ll also show diagrams to demonstrate how data will travel through the entire system.

P A R T 4

■ ■ ■

7249ch10.qxd 11/13/06 9:19 PM Page 109

7249ch10.qxd 11/13/06 9:19 PM Page 110

Building the Complete System
Architecture

Any type of complex system needs to have a strong foundation so that the system will be
able to support its contents and occupants. This is certainly the case when engineering soft-
ware. Many software systems today, whether developed professionally or not, do not have
a solid foundation. Although these systems often still function, inevitably at some point they
need to be expanded, and when that time comes, it is difficult to achieve any type of scalabil-
ity because the architecture lacks cohesiveness.

When building the e-commerce system for the Little Italy Vineyards case study, you will
avoid these pitfalls and spend adequate time establishing and documenting a solid architecture
for the system. This chapter will take a macro approach and examine the entire architecture as
a whole. Then, the next five chapters will go into more detail on each part of the architecture
introduced in this chapter.

In this chapter, I will assume you have prior experience with multitiered architecture and
systems. This chapter will not be an introductory guide to architecting a system but rather give
you insight about why the case study project is being constructed in this fashion. Specifically,
I’ll focus on the architecture of the Little Italy Vineyards application.

Introducing Multitier Architecture
Multitier architecture, often referred to as n-tier architecture, is a software system that is seg-
regated into separate sections referred to as tiers, or layers. The standard number of layers is
usually three. Software applications are constructed with this methodology for many reasons.
The main reason is to provide the optimal amount of scalability to the system and allow any
of the tiers to be upgraded, replaced, or interchanged independently. Inevitably, your software
system will face change at some point during its lifetime. This change can come in the form of
a functionality change, a functionality enhancement, a completely new module, or even a hard-
ware infrastructure enhancement. In any case, these changes can occur during the initial
development or after the first version is complete. Having the architecture of the system designed
from the beginning as multitiered will help minimize the impact on the system when imple-
menting any of these changes.

As a result of having the source code organized into multiple tiers, debugging and maintain-
ing your application as a whole will be easier. The organization will allow for you as a developer

111

C H A P T E R 1 0

■ ■ ■

7249ch10.qxd 11/13/06 9:19 PM Page 111

(or any other developers you might be working with) to easily locate specific sections where
an exception is occurring or where a change needs to be implemented.

If the system does not implement a well-structured architecture, your application will be
prone to defects and bugs; this will also make any type of upgrades or enhancements difficult
and time-consuming to execute. The system will not be very scalable, which will result in
a poor application.

Introducing the LittleItalyVineyards Architecture
All software applications have a common architecture to some degree, but at the same time
the slight variations will resemble the style of the individual architect or team of architects.
I’ve created the architecture you’ll use within this book as a result of examining many different
best practices provided by Microsoft and having years of experience building the architectures
of many software systems. Over the years, I have collaborated with an experienced and talented
software engineer and architect named Joe Merlino. Joe and I have worked together many
times while building architectures for software systems in different industries.

Based on my experiences working with Joe, I have taken many of the aspects of architectures
we have built and modeled them for the case study you will be using throughout this book.
With that said, the e-commerce system being developed for the case study will resemble
Figure 10-1.

Figure 10-1. The complete architecture

Operational

Presentation Layer

Business Logic Layer

Data Acess Layer

Common
Objects

SQL Server 2005

CHAPTER 10 ■ BUILDING THE COMPLETE SYSTEM ARCHITECTURE112

7249ch10.qxd 11/13/06 9:19 PM Page 112

You can easily see that the architecture will follow the multitiered fashion I have men-
tioned. The presentation layer is followed by the business logic layer and then finally the data
access layer. Notice that two additional items appear in the diagram that I have not discussed
yet. More specifically, the common objects and the operational shapes within the diagram will
not act as separate layers or tiers in the architecture; however, they will interact with the differ-
ent tiers within the architecture. I’ll discuss these more in the coming chapters.

Introducing the Presentation Layer
The presentation layer of the web application, or any other software application, is ultimately
what all the users will view on the surface. Since this chapter is taking a macro approach, I’ll
give the equivalent overview of the presentation layer. I’ll provide a much more in-depth
overview and guidelines on how and what to implement in Chapter 15, which is dedicated to
the presentation layer.

The presentation layer should be a thin layer within the architecture with the main pur-
pose of showing the user the best visual experience. After all, this layer is what the user will
witness, and user-friendliness will play a major role in the user’s opinion of the application.

In the presentation layer, the majority of the content will be Hypertext Markup Language
(HTML) and server controls. Validation will also occur at this level but will mostly be relatively
simple tasks such as ensuring the user is entering the required data or ensuring the data
entered matches a specific format.

Introducing the Data Access Layer
For the most part, essentially all software systems, whether they are client-server applications
or web applications, need to process some sort of data. This processing will most likely be in
the form of selecting, querying, inserting, updating, or deleting information to and from the
database. Other processing includes utilizing Extensible Markup Language (XML) data, but
this will ultimately vary based upon your specific system and its business requirements.

The project for the case study will have extensive interaction with the database. The data
access layer will process all this data by receiving requests that originate from the user within
the presentation layer and will then process the data and return either a notification or some
type of data or objects to the presentation layer.

Also included in the data access layer will be a component provided by Microsoft. This
data component is a Microsoft Data Access Blocks component that is part of the Microsoft
Enterprise Library Application Blocks for .NET. You can download these free components, and
their source code, and distribute them royalty free within your applications. Incorporating
these into the architecture saves you time on the overall development and maintains a cohesive
data execution point. In other words, the application will have a single point where DataSets,
SQLDataReaders, and other objects can directly interact with the database.

In Chapter 12, I will provide a much more detailed explanation of how to use and implement
the data access block.

CHAPTER 10 ■ BUILDING THE COMPLETE SYSTEM ARCHITECTURE 113

7249ch10.qxd 11/13/06 9:19 PM Page 113

Introducing the Business Logic Layer
The business logic layer is the remaining tier; it provides a dedicated portion of the system that
processes the business rules set forth from the earlier gathered requirements. This tier, in
addition to doing the actual processing, will act as a bridge from the presentation to the data
access tier, and vice versa. Although the system will have many fairly simple data-processing
needs, it will also have many instances where transactions of data will need to be processed.
The business logic layer acts as the orchestrator of processing the transactions and remains in
that capacity until each process is complete.

Summary
This chapter opened Part 4 of the book by discussing architecture pertaining to software sys-
tems; it also examined the high-level view of the architecture you’ll establish for the case
study. Other chapters in this part will be dedicated to the individual parts of the case study
architecture; specifically, they will provide detailed information about how exactly to imple-
ment the architecture within the e-commerce system.

CHAPTER 10 ■ BUILDING THE COMPLETE SYSTEM ARCHITECTURE114

7249ch10.qxd 11/13/06 9:19 PM Page 114

Creating the Common Objects

This chapter will not cover a specific tier within the architecture of the Little Italy Vineyards
case study but will play an important role within the overall system. This chapter will cover all
the common objects, or classes, that the system will contain. These objects will make passing
data much simpler because the objects will be able to contain data and provide a uniform
method of encapsulation for this information. As a result of this modeling, it will be easier for
all the engineers involved to understand what the system contains. In other words, having
individual classes that resemble the real-world objects will provide a better understanding of
the overall system.

In this chapter, you’ll examine all the aspects of the common objects. In the coming chap-
ters, you’ll learn exactly how the common objects will be used and implemented throughout
the entire system and architecture. In summary, this chapter will cover the following topics:

• Understanding why you’re using common objects

• Introducing the individual objects and classes

• Creating the classes within Visual Studio 2005

Why Use Common Objects?
At this point in the project and the book, some engineers reading this chapter might ask the
question, why do you need to use common objects and classes? The main answer stems from
the decision to use the object-oriented programming principles of C# and ASP.NET. Basically,
having common objects will allow you to model the overall system and provide an additional
layer of abstraction to the design and architecture. Common objects will also provide a direct
mapping from the database tables you created earlier to the classes within your code. This is
not to say every common object will be a table within the database. Many will, but sometimes
you’ll need a container of information that needs to be passed throughout the application,
and this will come in the form of a common object.

Object-oriented programming at its core takes advantage of modeling the system after
real-life objects. The properties you add to the individual classes will provide the description
of the individual classes. In other words, these classes will encapsulate all the necessary infor-
mation, which will allow for better organization and for a better flow of data.

115

C H A P T E R 1 1

■ ■ ■

7249ch11.qxd 11/13/06 9:19 PM Page 115

Revisiting the Classes
In the following sections, you’ll revisit the common objects you’ll implement and use within
the application. In Chapter 7, you modeled the system with Uniform Modeling Language (UML),
including creating the activity diagrams, use cases, and class diagrams. In this chapter, you’ll
revisit some of this content.

EndUser
Table 11-1 shows the EndUser class.

Table 11-1. EndUser Class

Data Type Field Name Property Name

Int _enduserid EndUserID

Int _endusertypeid EndUserTypeID

String _firstname FirstName

String _lastname LastName

Int _addressid AddressID

Address _address Address

Int _contactinformtationid ContactInformationID

ContactInformation _contactinformation ContactInformation

String _password Password

Bool _issubscribed IsSubscribed

EndUserType
Table 11-2 shows the EndUserType class.

Table 11-2. EndUserType Class

Data Type Field Name Property Name

Int _endusertypeid EndUserTypeID

String _endusername EndUserName

Product
Table 11-3 shows the Product class.

Table 11-3. Product Class

Data Type Field Name Property Name

Int _productid ProductID

Int _productcategoryid ProductCategoryID

ProductCategory _productcategory ProductCategory

CHAPTER 11 ■ CREATING THE COMMON OBJECTS116

7249ch11.qxd 11/13/06 9:19 PM Page 116

Data Type Field Name Property Name

String _name Name

Int _imageid ImageID

Byte Array _imagedata ImageData

String _description Description

Int _quantity Quantity

Decimal _price Price

ProductCategory
Table 11-4 shows the ProductCategory class.

Table 11-4. ProductCategory Class

Data Type Field Name Property Name

Int _productcategoryid ProductCategoryID

String _productcategoryname ProductCategoryName

Orders
Table 11-5 shows the Orders class.

Table 11-5. Orders Class

Data Type Field Name Property Name

Int _orderid OrderID

Int _enduserid EndUserID

EndUser _enduser EndUser

String _transactionid TransactionID

DateTime _orderdate OrderDate

Address _shippingaddress ShippingAddress

Int _orderstatusid OrderStatusID

Decimal _shippingtotal ShippingTotal

OrderDetails _orderdetails OrderDetails

Decimal _subtotal SubTotal

Decimal _ordertotal OrderTotal

Decimal _tax Tax

CreditCard _creditcard CreditCard

DateTime _shipdate ShipDate

String _trackingnumber TrackingNumber

CHAPTER 11 ■ CREATING THE COMMON OBJECTS 117

7249ch11.qxd 11/13/06 9:19 PM Page 117

OrderDetail
Table 11-6 shows the OrderDetail class.

Table 11-6. OrderDetail Class

Data Type Field Name Property Name

Int _orderdetailid OrderDetailID

Int _orderid OrderID

Int _productid ProductID

Products _products Products

Int _quantity Quantity

Address
Table 11-7 shows the Address class.

Table 11-7. Address Class

Data Type Field Name Property Name

Int _addressid AddressID

String _addressline AddressLine

String _addressline2 AddressLine2

String _city City

String _state State

String _postalcode PostalCode

ContactInformation
Table 11-8 shows the ContactInformation class.

Table 11-8. ContactInformation Class

Data Type Field Name Property Name

Int _contactinformationid ContactInformationID

String _phone Phone

String _phone2 Phone2

String _fax Fax

String _email Email

CHAPTER 11 ■ CREATING THE COMMON OBJECTS118

7249ch11.qxd 11/13/06 9:19 PM Page 118

ShoppingCart
Table 11-9 shows the ShoppingCart class.

Table 11-9. ShoppingCart Class

Data Type Field Name Property Name

Int _shoppingcartid ShoppingCartID

String _cartguid CartGUID

Int _quantity Quantity

Int _productid ProductID

DateTime _datecreated DateCreated

CreditCard
Table 11-10 shows the CreditCard class.

Table 11-10. CreditCard Class

Data Type Field Name Property Name

Address _address Address

String _cardtype CardType

Int _expmonth ExpMonth

Int _expyear ExpYear

String _number Number

String _securitycode SecurityCode

Implementing the Common Classes
In this section, I will give you detailed instructions for adding the common classes to your
overall source code within the Visual Studio 2005 solution file and projects. Keep the following
in mind: the common classes will not provide any functionality or methodology. The classes
will merely contain a series of properties, which will encapsulate the most common objects
you will be able to utilize throughout the system.

The following exercise shows how to add the common classes to your existing source code
that you previously organized within the Visual Studio 2005 solution.

CHAPTER 11 ■ CREATING THE COMMON OBJECTS 119

7249ch11.qxd 11/13/06 9:19 PM Page 119

Exercise: Creating a Common Class

In this exercise, you will create one of the many common classes you will need for your application. Follow
these steps:

1. Revisit the Visual Studio 2005 solution you set up in the previous chapter. Relaunch the project, and
once the entire Visual Studio solution has successfully loaded, you will be see the screen shown in
Figure 11-1.

CHAPTER 11 ■ CREATING THE COMMON OBJECTS120

Figure 11-1. Revisiting Visual Studio 2005

2. Next, choose the common object class library project named LittleItalyVineyard.Common. Right-click
the project, and then choose Add ➤ Class, as shown in Figure 11-2.

7249ch11.qxd 11/13/06 9:19 PM Page 120

Figure 11-2. Adding a new class

3. After choosing to add a new class to the class library project, you will see the dialog box shown in
Figure 11-3 where you can enter the name of your new class, EndUser.

CHAPTER 11 ■ CREATING THE COMMON OBJECTS 121

7249ch11.qxd 11/13/06 9:19 PM Page 121

Figure 11-3. Naming the new class file

4. As shown in Figure 11-3, in this exercise you’ll create only one of the classes of the common objects.
This first class will be the EndUser common object; after clicking the Add button, you’ll see the class,
which looks like Figure 11-4.

CHAPTER 11 ■ CREATING THE COMMON OBJECTS122

Figure 11-4. The EndUser class file

7249ch11.qxd 11/13/06 9:19 PM Page 122

5. You are able to view the new class that was created; however, you still need to do some additional
work within the class file. At the moment, the class simply shows the name of class. Change the code
within the class to resemble the following:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.Common
{

public class EndUser
{

public EndUser()
{

}
}

}

You have changed the class to that of a public class, and you have added the subsequent constructor.
Now you are ready to move along with the implementation of the properties contained in the EndUser
class.

6. The constructor you created in the previous step will allow you to add the field variables along with the
individual properties. So, you can create the first of the series of fields and properties, which will be the
EndUserID property, as shown here:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.Common
{

public class EndUser
{

private int _enduserid;

public EndUser()
{

}

public int EndUserID
{

get { return _enduserid; }
set { _enduserid = value; }

}
}

}

CHAPTER 11 ■ CREATING THE COMMON OBJECTS 123

7249ch11.qxd 11/13/06 9:19 PM Page 123

You added a new field, _enduserid, just above the constructor and then added its respective property,
EndUserID. Although in this example you’re creating this new information manually, later in the chapter
you will use a shortcut in Visual Studio that will make the task of creating this information a whole lot
easier and less time-consuming.

7. To complete the remaining properties within the class, repeat the same procedure as in the previous step
by creating the private field name along with its associated property that is specified in Table 11-1. When
complete, the class will resemble the following code:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.Common
{

public class EndUser
{

private int _enduserid;
private int _endusertypeid;
private string _firstname;
private string _lastname;
private Address _address;
private int _addressid;
private ContactInformation _contactinformation;
private int _contactinformtationid;
private string _password;
private bool _issubscribed;

public EndUser()
{

}

public int EndUserID
{

get { return _enduserid; }
set { _enduserid = value; }

}

public int EndUserTypeID
{

get { return _endusertypeid; }
set { _endusertypeid = value; }

}

public string FirstName
{

get { return _firstname; }

CHAPTER 11 ■ CREATING THE COMMON OBJECTS124

7249ch11.qxd 11/13/06 9:19 PM Page 124

set { _firstname = value; }
}

public string LastName
{

get { return _lastname; }
set { _lastname = value; }

}

public Address Address
{

get { return _address; }
set { _address = value; }

}

public int AddressID
{

get { return _addressid; }
set { _addressid = value; }

}

public ContactInformation ContactInformation
{

get { return _contactinformation; }
set { _contactinformation = value; }

}

public int ContactInformtationID
{

get { return _contactinformtationid; }
set { _contactinformtationid = value; }

}

public string Password
{

get { return _password; }
set { _password = value; }

}

public bool IsSubscribed
{

get { return _issubscribed; }
set { _issubscribed = value; }

}
}

}

CHAPTER 11 ■ CREATING THE COMMON OBJECTS 125

7249ch11.qxd 11/13/06 9:19 PM Page 125

You have now referenced the remaining properties within the EndUser class and added them in a similar
fashion as you did with the EndUserID property. After completing this portion of the EndUser class, you could
now create the remaining common objects and classes. However, the following section will show you how to
do this easily in Visual Studio 2005.

You have now completed not only the exercise but also the first common object and class
that will be used within your application. As a result of there being several common classes,
I won’t present a separate exercise for each of the objects. After completing this exercise, it
should be relatively simple to model the remaining classes discussed earlier in this chapter.
The important point is that within this specific portion of the architecture, these common
classes will only represent objects and not provide any functionality themselves. Again, you’ll
use them throughout the entire system and architecture but as part of the functionality.

You created the first common class manually, but Visual Studio 2005 offers a shortcut
you can use to build the remaining classes quite easily. The next section of the chapter will
show how you can minimize your time while building the remaining common classes and
be as efficient as possible.

Refactoring Within Visual Studio 2005
In the previous exercise, you created a new class file, added a field name, and then with the field
name created a public property. In doing so, you created the property manually—in other words,
you simply typed all the code by hand. This can become quite tedious, especially when the class
files contain many properties.

You are in luck; Visual Studio 2005 has a new feature within the refactoring that will allow
you to specify the field name and then create the subsequent property with only a couple of
clicks. To demonstrate this functionality, the following exercise walks you through creating the
next common object class, the EndUserType class.

Exercise: Using the Refactoring Functionality in Visual Studio 2005

The next class within the common objects will be a relatively small class with only two properties. However,
this exercise will show how to use Visual Studio 2005 and its refactoring features to speed up the creation
process. Follow these steps:

1. Relaunch the LittleItalyVineyards Visual Studio solution. After the solution loads successfully, as demon-
strated in the previous exercise, add a new class named EndUserType to the LittleItalyVineyard.Common
class library project, as shown in Figure 11-5.

CHAPTER 11 ■ CREATING THE COMMON OBJECTS126

7249ch11.qxd 11/13/06 9:19 PM Page 126

2. In a similar fashion as you did in the previous exercise when creating the EndUser class, add the public
identifier to the class name along with a constructor that will yield the following code:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.Common
{

public class EndUserType
{

public EndUserType()
{

}
}

}

3. Now that you have the basic setup of the class, you’ll proceed to add the first field name, _endusertypeid,
as shown here:

using System;
using System.Collections.Generic;
using System.Text;

CHAPTER 11 ■ CREATING THE COMMON OBJECTS 127

Figure 11-5. The EndUserType class file

7249ch11.qxd 11/13/06 9:19 PM Page 127

namespace LittleItalyVineyard.Common
{

public class EndUserType
{

private int _endusertypeid;

public EndUserType()
{

}
}

}

4. In this step, use the refactoring functionality to create the property as opposed to manually coding it. To
do so, right-click the newly added field name, _endusertypeid, and choose Refactor ➤ Encapsulate
Field, as shown in Figure 11-6. If you happen to be using the Express version for development, the
refactoring tools will not be available, and unfortunately you’ll need to create the properties manually.

Figure 11-6. Selecting the Refactor ➤ Encapsulate Field menu

5. After selecting this item, you will see the dialog box shown in Figure 11-7 where you will add the name
of the property to be added to the class.

CHAPTER 11 ■ CREATING THE COMMON OBJECTS128

7249ch11.qxd 11/13/06 9:19 PM Page 128

Figure 11-7. Encapsulate Field dialog box

6. In the Encapsulate Field dialog box, you can see that the field name that was selected was the
_endusertypeid field and the next item to address is the actual property name. At this point,
change the name of the property to EndUserTypeID to reflect camel-casing naming conventions.
Notice the other options in the Encapsulate Field dialog box. You won’t use any of the other
options, but they give you the ability to search within the comments and within any string values
you might have created in the code. Lastly, another option offers the ability to preview all your
changes before the code is committed. When finished, click the OK button, and you will see the
following code:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.Common
{

public class EndUserType
{

private int _endusertypeid;

public int EndUserTypeID
{

get { return _endusertypeid; }
set { _endusertypeid = value; }

}

public EndUserType()
{

}
}

}

CHAPTER 11 ■ CREATING THE COMMON OBJECTS 129

7249ch11.qxd 11/13/06 9:19 PM Page 129

7. You can see that the EndUserTypeID property was automatically created for you with only a few clicks as
opposed to manually hand-coding the get and set items for the property. Continue to the remaining
property of the EndUserType class—the EndUserName property with its respective field, _endusername.
The completed class will resemble the following code:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.Common
{

public class EndUserType
{

private int _endusertypeid;
private string _endusername;

public EndUserType()
{

}

public int EndUserTypeID
{

get { return _endusertypeid; }
set { _endusertypeid = value; }

}

public string EndUsername
{

get { return _endusername; }
set { _endusername = value; }

}
}

}

Notice that the code was rearranged slightly to be consistent with the class design in that the field names are
listed followed by the constructor and finally the individual properties. Continue using the refactoring func-
tionality to create the remaining common object class files for the project that were specified in the previous
tables. It will be quite apparent that this will save you time in your development.

Summary
In this chapter, you explored the ins and outs of not only why you are incorporating common
objects within your system but also how to create them effectively with a new technique in
Visual Studio 2005. However, I didn’t discuss how you’ll use the common objects throughout
the system’s architecture. I’ll cover this in the next chapters, which will discuss in more detail
how to use the common objects.

CHAPTER 11 ■ CREATING THE COMMON OBJECTS130

7249ch11.qxd 11/13/06 9:19 PM Page 130

Creating the Data Access Layer

This chapter will deal with a main layer of the Little Italy Vineyards’ application architecture.
The layer in question is the data access layer, which will play a vital role in the entire application
from start to finish. It is apparent that any enterprise application will have extensive interaction
and connectivity with its database and all the data that is associated with it. With advances in
technology and, more specifically, the new version of the .NET Framework 2.0, it is signifi-
cantly easier to maintain such functionality. However, even though this makes some of the
work easier than in the past, you still need to maintain cohesion and organization.

This cohesion and organization will come in the form of the data access layer as well as in
the advancements of the new version of the framework. Having this structure will give the case
study application several benefits.

This chapter will focus on the following topics to give you a solid understanding of the
data access layer of the architecture:

• Understanding why you should use a data access layer

• Using the Microsoft Data Access Application Block

• Implementing the data access layer into the project

Why a Data Access Layer?
Thus far I briefly touched upon why you would want to have a specific section within your sys-
tem and architecture dedicated to the data access functional points. Basically, you will have
many reasons for dedicating a specific segment, or tier, to the data access of your system. One
of the key reasons for having a multitiered architecture is to have separate layers that can be
updated or changed independently of one another. Well, in the case of the data access layer,
this is certainly true, as I’ll illustrate with a specific example related to databases. (You can
refer to Chapter 10, which was about architecture as a whole, for more benefits.)

Say an application is designed initially for one specific database, such as Oracle. Then
sometime in the lifetime of the application, your client or boss informs you that the company
is going to switch the database it uses for storing data. In this case, the new database will be
Microsoft SQL Server. After being informed of this, you realize you will have to migrate your
application, which was originally targeted to use Oracle, so that it conforms to a SQL Server
database. That sounds like fun, right? Unfortunately, this scenario happens frequently in
today’s marketplace, so it is best to be prepared for a migration such as this.

131

C H A P T E R 1 2

■ ■ ■

7249ch12.qxd 11/13/06 9:20 PM Page 131

If you didn’t have a specific data access layer, accommodating such a change would be
a monumental task. You would probably find code throughout the application that dealt with
connecting and communicating to the database. Repetitive code would most likely be a common
theme. If this were the situation, to convert everything to use a new database, the development
team would have to look at essentially every line of code and replace all the code that dealt with
accessing and processing the data to some new form of functionality that would be compatible
with the new database being implemented. Undoubtedly, this would be a long process and could
be somewhat compared to almost starting at “square one.”

On the other hand, from the outset of a project, say you know that some changes will be
inevitable; preparing for situations such as this and implementing a data access layer will
behoove all involved. As a result of having a predefined data access layer from the beginning
of the project, any application, whether it’s a web or Windows desktop or a client-server appli-
cation, will have the ability to adapt to a major shift in which database it is using.

With a defined data access layer, changing databases will still not be simplistic, but at least
you will have a single section within the application on which you can focus. You won’t need to
scavenge throughout the entire code base because you will know that only a specific section will
be affected by the change. In fact, this section, the data access layer, can be essentially extracted
and worked upon independently so the migration has a minimal effect on other sections of the
code and the overall application. Although this will not trivialize the overall task, it will signifi-
cantly shorten the timeframe to achieve the task.

Although this example, as mentioned earlier, can certainly be a common scenario, it is
not the only reason to design a data access layer. You get many more benefits from having this
dedicated tier within the architecture. To name only a few, having one dedicated area where
connections will be opened and closed in a methodical fashion will promote enhanced per-
formance. In addition, storing the information and credentials will allow for a successful
connection to the database and just improve the overall processing of the data. For instance,
where will the application use DataSets, SqlDataReaders, and Extensible Markup Language
(XML)? Having a centralized location to encapsulate this activity will provide the most effi-
cient maintenance and scalability.

Using the Microsoft Data Access Application
Block
Prior to discussing the actual implementation for the data access layer in the source code and
Visual Studio 2005, I’ll discuss a companion component that you’ll use with the data access layer.
This companion project will be a class file that you add to the LittleItalyVineyard.DataAccess class
library project within the solution. I’m referring to the Microsoft Data Access Application Block,
which is a free component from Microsoft with a royalty-free distribution.

■Note At the time of this writing, you can download the Microsoft Data Access Application Block from the
Microsoft Download Center (http://www.microsoft.com/downloads/search.aspx).

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER132

7249ch12.qxd 11/13/06 9:20 PM Page 132

The Microsoft Data Access Application Block is an extremely useful component that will
work in conjunction with your own LittleItalyVineyard.DataAccess class library project. This
component will encapsulate the actual code that will execute against the database. It will
automatically manage the connections, the parameters, and the name of the stored procedure
as a result of this information being passed into the class. The class that has this capability is
named SQLHelper, and it has many methods that are overloaded to handle these tasks.

Discussing the application blocks in great detail is beyond the scope of this book; how-
ever, I will discuss how you will implement it in the overall solution. The following exercise
shows how to implement it in your architecture.

Exercise: Implementing the Microsoft Data Access Application Block

In this exercise, you will add the application block class, SQLHelper, to the LittleItalyVineyard.DataAccess
class library project. Follow these steps:

1. First download the application block from the link provided earlier, or install it from the source code
provided with this book. Once installed, you can proceed to the LittleItalyVineyard.DataAccess project,
and right-click the project. Choose Add ➤ Existing Item, as shown in Figure 12-1.

Figure 12-1. Adding an existing item

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER 133

7249ch12.qxd 11/13/06 9:20 PM Page 133

2. After choosing to add an existing item, you will see a dialog box to navigate to the file you want to
add. If you chose the default location when you installed the application block, then you can navi-
gate to C:\Program Files\Microsoft Application Blocks For .Net\Data Access v2\Code\CS\
Microsoft.ApplicationBlocks.Data and select the SQLHelper.cs file, as shown in Figure 12-2.

Figure 12-2. Add Existing Item dialog box

3. Finally, click the Add button, which will add the SQLHelper class file to the project.

The data access project can now take advantage of the Microsoft Data Access Application Block component.
In the next section of the chapter, I will discuss how you can take advantage of using the application blocks.

Implementing the Classes
You’ll now examine two aspects of this individual tier of the architecture. However, before dis-
cussing the details, I’ll discuss the specifics of how and exactly what you will need to implement
in your source code baseline to begin constructing the data access layer for your project in the
case study.

For the purposes of this chapter, you will implement the main structure of the data access
layer, which will prepare you for the subsequent chapters and examples on how data will be
processed throughout this tier of the architecture. In the following chapters, I’ll provide many
more examples to show how the overall system will interact with the data access layer and
thus demonstrate its benefits. Therefore, you’ll now learn about the first item to implement,
which is the base class within the data access layer.

The DataAccessBase Class
The first step of implementing the data access layer within the overall project will be a single class
from which all other classes within the data access layer will inherit. This class will be the base
class of the tier and will be appropriately named DataAccessBase. This class, for the case study

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER134

7249ch12.qxd 11/13/06 9:20 PM Page 134

purposes, will primarily have only a few functions to perform. However, as your application
scales, the class will have the ability to be expanded upon depending on the individual needs.

As mentioned, this class will have limited functionality for the purposes of the case study.
More specifically, it will have two separate properties: one for the name of the stored procedure
being used and the other for returning the connection string for the database. At the moment,
I have not specified what the connection string is or where it will be contained. I’ll provide this
information in the section “The Connection String.” The following exercise demonstrates how
to implement the base class within the data access layer.

Exercise: Implementing the DataAccessBase Class

This exercise will show how to add the necessary class files and finally all the associated code in Visual Studio
2005. Follow these steps:

1. Proceed to Visual Studio 2005. Navigate to the Class Libraries solution folder and then to the
LittleItalyVineyard.DataAccess class library project. Then right-click the project. From the menu,
select Add ➤ Class, as shown in Figure 12-3.

Figure 12-3. Adding the DataAccessBase class

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER 135

7249ch12.qxd 11/13/06 9:20 PM Page 135

2. When presented with the Add New Item dialog box, you will notice that the Class template is selected.
Enter the name of the class file being added, DataAccessBase, as shown in Figure 12-4, and click the
Add button when complete.

Figure 12-4. Naming the class

Upon adding the class successfully, you will see the shell code of a new class, as shown here:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess
{

class DataAccessBase
{
}

}

3. You can now enter the properties that this base class will contain. The first item to add is a public iden-
tifier for the class followed by a private string field, _storedprocedurename, and finally the associated
property, StoredProcedureName. When complete, the code will resemble the following:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess
{

public class DataAccessBase

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER136

7249ch12.qxd 11/13/06 9:20 PM Page 136

{
private string _storedprocedureName;

protected string StoredProcedureName
{

get { return _storedprocedureName; }
set { _storedprocedureName = value; }

}
}

}

4. The base class is almost complete. However, before you add the final property to obtain the connec-
tion string, you need to add a reference to the class library project. The reference you need is the
System.Configuration class from the framework library. To add this reference, right-click the Refer-
ences folder within the project, and select the Add Reference menu item, as shown in Figure 12-5.

Figure 12-5. Adding a reference

5. After selecting the Add Reference option, within a few seconds you will see the Add Reference dialog
box. Select the System.Configuration reference located on the .NET tab, as shown in Figure 12-6, and
then click the OK button.

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER 137

7249ch12.qxd 11/13/06 9:20 PM Page 137

Figure 12-6. Add Reference dialog box

6. This adds the reference to System.Configuration to the data access class library project, which will not be
visible in the References folder. You can now complete the base class by adding the ConnectionString prop-
erty. First you have to declare the new namespace being used at the top of the code:

using System.Configuration;

This will give you the following declarations:

using System;
using System.Collections.Generic;
using System.Text;
using System.Configuration;

7. Now you can add the ConnectionString property, which will return the connection string that you will
provide later in this chapter. This property will be a read-only property because it has only a get and
not a set within the property. The property will not need to have an associated field as the other prop-
erties have had because it will use the ConfigurationManager class and the ConnectionStrings function
to return the connection string for the database:

protected string ConnectionString
{

get
{

return ConfigurationManager. ➥

ConnectionStrings["SQLCONN"].ToString();
}

}

As mentioned, you have created a read-only property that will return the connection string with the
name SQLCONN, which will be within the Web.config file. The base class code as a whole will now
resemble the following:

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER138

7249ch12.qxd 11/13/06 9:20 PM Page 138

using System;
using System.Collections.Generic;
using System.Text;
using System.Configuration;

namespace LittleItalyVineyard.DataAccess
{

public class DataAccessBase
{

private string _storedprocedureName;

protected string StoredProcedureName
{

get { return _storedprocedureName; }
set { _storedprocedureName = value; }

}

protected string ConnectionString
{

get
{
return ConfigurationManager. ➥

ConnectionStrings["SQLCONN"].ToString();
}

}
}

}

You have completed the base class for the data access layer of the case study project. You should remember
one important issue: even though you have the ability to retrieve the connection string to the database, I have
not discussed how to implement the connection string or where it will reside within the overall application. If
you were to execute the code as it is now, you would not get an error or exception but simply an empty string.
Don’t despair—the next section will provide all the details for not only the connection string but also where
you’ll place it and why.

The Connection String
As mentioned previously, the project is missing the actual connection string. Prior to diving
directly into where the connection string will be located, I’ll briefly discuss the concept behind
having only one connection string in case it’s not already obvious.

Every application that will utilize a database will need to have information that supplies
the credentials for the database. This is what is referred to as the connection string and will
need to be utilized each time you want the code to interact with the database. With this being
said, you should specify the connection string only once within the application so that if and
when it needs to change, you can change it in that single place.

For the application and architecture, the single place where the connection string will be
located is within the web project in the Web.config file.

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER 139

7249ch12.qxd 11/13/06 9:20 PM Page 139

The main reason for having the connection string located in the Web.config file is to simply
have it in a single location. The following exercise shows how to implement the connection string.

Exercise: Implementing the Connection String

In this exercise, you will add the Web.config file to the web project and add the connection string. Follow these
steps:

1. Return to Visual Studio 2005. Right-click the web project, and choose Add ➤ New Item. You will see
the Add New Item dialog box once again.

2. In this dialog box, select the Web Configuration File item, which will provide a default name of
Web.config, as shown in Figure 12-7. You don’t need to rename this, so click the Add button.

Figure 12-7. Add New Item dialog box

After adding the Web.config file to the project, the shell of the file will resemble the following:

<?xml version="1.0"?>
<!--

Note: As an alternative to hand editing this file you can use the
web admin tool to configure settings for your application. Use
the Website->Asp.Net Configuration option in Visual Studio.
A full list of settings and comments can be found in
machine.config.comments usually located in
\Windows\Microsoft.Net\Framework\v2.x\Config

-->
<configuration>

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER140

7249ch12.qxd 11/13/06 9:20 PM Page 140

<appSettings/>
<connectionStrings/>
<system.web>

<!--
Set compilation debug="true" to insert debugging
symbols into the compiled page. Because this
affects performance, set this value to true only
during development.

-->
<compilation debug="false" />
<!--

The <authentication> section enables configuration
of the security authentication mode used by
ASP.NET to identify an incoming user.

-->
<authentication mode="Windows" />
<!--

The <customErrors> section enables configuration
of what to do if/when an unhandled error occurs
during the execution of a request. Specifically,
it enables developers to configure html error pages
to be displayed in place of a error stack trace.

<customErrors mode="RemoteOnly"
defaultRedirect="GenericErrorPage.htm">
<error statusCode="403" redirect="NoAccess.htm" />
<error statusCode="404" redirect="FileNotFound.htm" />

</customErrors>
-->

</system.web>
</configuration>

3. Within the configuration settings of the Web.config file, you will need to alter the ConnectionStrings
tags as follows:

<?xml version="1.0"?>
<!--

Note: As an alternative to hand editing this file you can use the
web admin tool to configure settings for your application. Use
the Website->Asp.Net Configuration option in Visual Studio.
A full list of settings and comments can be found in
machine.config.comments usually located in
\Windows\Microsoft.Net\Framework\v2.x\Config

-->
<configuration>

<appSettings/>
<connectionStrings>

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER 141

7249ch12.qxd 11/13/06 9:20 PM Page 141

</connectionStrings>
<system.web>

<!--
Set compilation debug="true" to insert debugging
symbols into the compiled page. Because this
affects performance, set this value to true only
during development.

-->
<compilation debug="false" />
<!--

The <authentication> section enables configuration
of the security authentication mode used by
ASP.NET to identify an incoming user.

-->
<authentication mode="Windows" />
<!--

The <customErrors> section enables configuration
of what to do if/when an unhandled error occurs
during the execution of a request. Specifically,
it enables developers to configure html error pages
to be displayed in place of a error stack trace.

<customErrors mode="RemoteOnly"
defaultRedirect="GenericErrorPage.htm">
<error statusCode="403" redirect="NoAccess.htm" />
<error statusCode="404" redirect="FileNotFound.htm" />

</customErrors>
-->

</system.web>
</configuration>

4. The remaining step is to add the actual connection string, as shown here:

<connectionStrings>
<add
name="SQLCONN" connectionString="server=Lumberg\SQL2005; ➥

uid=sa;pwd=*****;database=LittleItalyVineyard"/>
</connectionStrings>

You now have successfully implemented the Web.config file with the connection string for database connectiv-
ity. I have shown the specifics for my development database server, so you will need to modify your connection
string to represent your individual settings and credentials according to the credentials you have set up in your
own database.

The StoredProcedure Class
Continuing with the implementation phase of the data access layer in the architecture, you
will specify the name of each stored procedure used in the application. This class is named

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER142

7249ch12.qxd 11/13/06 9:20 PM Page 142

StoredProcedure and will contain only a single enumeration that will list all the stored proce-
dure names. You might be wondering why you will have a dedicated section for this. Well, you
could simply add a string value throughout the application, which would represent the name
of each stored procedure. However, when designing this application, you want to achieve the
most scalability possible. Therefore, having a single location, via an enumeration, will allow
you to change one place when you need to change the name of a stored procedure or, more
likely, when you need to add stored procedures. This will provide a much cleaner maintenance
process and will reduce the time you have to expend when dealing with these operations. The
following exercise shows how to create the StoredProcedure class.

Exercise: Creating the StoredProcedure Class

This exercise will continue with the overall implementation of the data access layer. You will add the stored
procedure class file and create the enumeration that will list all the names of the stored procedures that will
be used throughout the entire application. Follow these steps:

1. The first task is similar to the prior exercises. Proceed to the LittleItalyVineyard.DataAccess class
library project, and right-click. Choose Add ➤ Class. Finally, rename the class to StoredProcedure,
and click the Add button. You will use the shell code, as shown here:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess
{

class StoredProcedure
{
}

}

2. In the code, add a public identifier, and then add the enumeration called Name:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess
{

public class StoredProcedure
{

public enum Name
{

}
}

}

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER 143

7249ch12.qxd 11/13/06 9:20 PM Page 143

3. Everything is now set up for the stored procedure enumeration. All you need to do is list the individual
names of the stored procedures within the Name enum. Since you have not created any stored proce-
dures yet, I will list three sample names of stored procedures to demonstrate how the listing will be
implemented:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess
{

public class StoredProcedure
{

public enum Name
{

STOREDPROCEDURE_A ,
STOREDPROCEDURE_B ,
STOREDPROCEDURE_C

}
}

}

Later in the book when you implement code for specific functionality, you will need to create stored proce-
dures for the given functionality, and when doing so, you will add each name to this enumeration within the
StoredProcedure class.

The DataBaseHelper Class
The last class you need to add to the data access layer and project will be the class that utilizes
the Microsoft Data Access Application Block class. It is the DataBaseHelper class, and it will
contain a number of overloaded methods and functions that will essentially wrap the SQLHelper
class functionality. These methods and functions will return DataSets, SqlDataReaders, and
any necessary transactions. In addition, one property will contain the array of parameters that
will be needed to pass along the individual data processes. The following exercise shows you
how to implement the DataBaseHelper class.

Exercise: Implementing the DataBaseHelper Class

This exercise shows how to create the new DataBaseHelper class file and add the associated code. Follow
these steps:

1. The first step is to add the actual class file. As you have done several times in previous exercises,
right-click the LittleItalyVineyard.DataAccess class library project, and select Add ➤ Class. You will
then see the Add New Item dialog box. Name the class DataBaseHelper, as shown in Figure 12-8, and
click Add.

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER144

7249ch12.qxd 11/13/06 9:20 PM Page 144

Figure 12-8. Adding the DataBaseHelper class file

2. After adding the new class, you will see the standard shell code for a new class. For the DataBaseHelper
class, have it inherit from the DataAccessBase, and add the public identifier for the class, as shown here:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess
{

public class DataBaseHelper : DataAccessBase
{

}
}

3. Next, add some declarations to the namespaces at the top of the code. The namespaces will be
System.Data, System.Data.SqlClient, and finally Microsoft.ApplicationBlocks.Data, as shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using Microsoft.ApplicationBlocks.Data;

namespace LittleItalyVineyard.DataAccess
{

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER 145

7249ch12.qxd 11/13/06 9:20 PM Page 145

public class DataBaseHelper : DataAccessBase
{

}
}

4. You are now ready to add the individual functions and properties to the class. To begin, first add a field
for an array of SqlParameters along with its associated property, Parameters:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using Microsoft.ApplicationBlocks.Data;

namespace LittleItalyVineyard.DataAccess
{

public class DataBaseHelper : DataAccessBase
{

private SqlParameter[] _parameters;

private SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

In the following chapters, I will provide additional details about what this property will be used for; at
this point, it is sufficient to understand that this property will supply the parameters for the stored pro-
cedures in the code.

5. The final step of the exercise is to add five overloaded methods named Run. This will allow you to take
advantage of the SqlHelper class and use DataSets, SqlDataReaders, and even associated transactions.
The following code is for the complete DataBaseHelper class:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using Microsoft.ApplicationBlocks.Data;

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER146

7249ch12.qxd 11/13/06 9:20 PM Page 146

namespace LittleItalyVineyard.DataAccess
{

public class DataBaseHelper : DataAccessBase
{

private SqlParameter[] _parameters;

public DataBaseHelper(string storedprocedurename)
{

StoredProcedureName = storedprocedurename;
}

public void Run(SqlTransaction transaction)
{

SqlHelper.ExecuteNonQuery(transaction ,
CommandType.StoredProcedure ,
StoredProcedureName , Parameters);

}

public void Run(SqlTransaction transaction ,
SqlParameter[] parameters)

{
SqlHelper.ExecuteNonQuery(transaction ,

CommandType.StoredProcedure ,
StoredProcedureName , parameters);

}
}

public DataSet Run(string connectionstring ,
SqlParameter[] parameters)

{
DataSet ds;
ds = SqlHelper.ExecuteDataset(connectionstring ,

StoredProcedureName , parameters);
return ds;

}

public object RunScalar(string connectionstring ,
SqlParameter[] parameters)

{
object obj;
obj = SqlHelper.ExecuteScalar(connectionstring ,

StoredProcedureName , parameters);
return obj;

}

public object RunScalar(SqlTransaction transaction ,
SqlParameter[] parameters)

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER 147

7249ch12.qxd 11/13/06 9:20 PM Page 147

{
object obj;
obj = SqlHelper.ExecuteScalar(transaction ,

StoredProcedureName ,
parameters);

return obj;
}

public DataSet Run(string connectionstring)
{

DataSet ds;
ds = SqlHelper.ExecuteDataset➥

(connectionstring ,
CommandType.StoredProcedure ,

StoredProcedureName);
return ds;

}

public void Run()
{

SqlHelper.ExecuteNonQuery➥

(base.ConnectionString ,
CommandType.StoredProcedure ,

StoredProcedureName , Parameters);
}

public SqlDataReader Run(SqlParameter[] parameters)
{

SqlDataReader dr;
dr = SqlHelper.ExecuteReader➥

(base.ConnectionString ,
CommandType.StoredProcedure ,

StoredProcedureName , parameters);
return dr;

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER148

7249ch12.qxd 11/13/06 9:20 PM Page 148

How It Works

You have certainly added quite a lot of code to this class. Let’s examine some of the individual items for some
clarification. The first item to discuss is within the constructor. The constructor takes a parameter of the stored
procedure name that is going to be used and then sets the StoredProcedureName property from the base class
equal to that of the parameter:

public DataBaseHelper(string storedprocedurename)
{

StoredProcedureName = storedprocedurename;
}

After the constructor, a series of methods and functions are overloaded that will perform the data access
task by taking advantage of the SQLHelper class and the Microsoft Data Application Block components. For
instance, when a DataSet is needed to return information from the database, you will utilize a function that
returns a DataSet object such as the following:

public DataSet Run(string connectionstring)
{

DataSet ds;
ds = SqlHelper.ExecuteDataset(connectionstring ,

CommandType.StoredProcedure , StoredProcedureName);
return ds;

}

In this function, the connection string is passed as a parameter, and then finally the SqlHelper.ExecuteDataset
function is called specifying that a stored procedure will be used, specifying the name of the stored procedure,
and specifying the connection string. The DataSet object is then returned to the calling code.

The class is now complete for the time being. When you proceed to coding the individual functionality to
complete the application, you might have to adjust or add to this class. That is perfectly OK because at this
point you have a solid foundation for the overall data access layer.

Summary
You have arrived at the end of the chapter dedicated to the data access tier of the overall archi-
tecture. In this chapter, I discussed the common objects, and of course this chapter dealt with
the data access portion of the system. The data access tier is one of the most important sec-
tions of the architecture because the case study application will be processing, storing, and
retrieving data from a database frequently. You have a solid data access layer at this point in
the code; however, as mentioned previously, as you continue to code the individual function-
ality, you may have to revisit the structure and possibly tweak it or add some updates. In the
next chapter, I’ll discuss the business logic layer of the architecture.

CHAPTER 12 ■ CREATING THE DATA ACCESS LAYER 149

7249ch12.qxd 11/13/06 9:20 PM Page 149

7249ch12.qxd 11/13/06 9:20 PM Page 150

Creating the Business Logic
Layer

Moving along to the next part of the system’s architecture brings you to the business logic
layer. Each software application has its own set of logic and functionality that needs to be
implemented. Up to this point in the book, I have discussed where and how the data will be
processed, and I have discussed the common objects, which are the entities contained in the
system; however, I have not discussed where the individual processing of the required business-
specific rules will take place. Therefore, this chapter covers the business logic layer of the
architecture. The business logic layer of the architecture will act as a bridge from the presenta-
tion to the data access so that the information can be processed in some cases and, in other
cases, can simply be the conduit to ensure the smooth flow of information.

Throughout the chapter, I’ll discuss several topics related to the business logic layer:

• How the business logic layer works

• How the common objects will be integrated

• How to implement the business logic layer

• How everything will work together

Introducing the Business Logic Layer
As mentioned in previous chapters, having a business logic layer within your architecture
offers you many benefits. The business logic layer is standard within a common n-tier, or
multitier, system architecture. In short, the business logic layer allows for the explicit separa-
tion of the data access and presentation layers. Although the data access tier performs all the
functionality related to processing the data, it does not enforce any rules or logic that might be
required for the business. In fact, the data access tier has no knowledge of any logic that needs
to be performed. It simply will perform the data processing or retrieve any data it is asked to
perform. In addition, this section of the architecture does not have any knowledge about
Hypertext Markup Language (HTML) and does not directly output it. It does not know about
ADO.NET or SQL and instead will connect the sections of the architecture that are responsible
for knowing the other items.

151

C H A P T E R 1 3

■ ■ ■

7249ch13.qxd 11/13/06 9:20 PM Page 151

This section of the architecture is the overall brain of the application. In other words, it
will have the most information about the activity and the processing that needs to take place.
For example, say your application needs to process a list of rules prior to allowing the user to
proceed to their account. For example, when a user enters their credentials while logging in,
the information that the user enters needs to be compared to the credentials within the data-
base when the account was originally created. This is the type of checklist or comparison that
would occur at this level.

The common classes will be heavily integrated throughout the business logic layer. Remem-
ber that the common classes are simply that—common entities that are found throughout the
system, some being tangible and some being intangible. While providing a model of what the sys-
tem contains, they also provide a mapping from the code to the database structure or overall
schema, which will make it easier for the application to process and manage data.

For example, when a user logs in to their account, this will originate at the presentation
layer, with a text box for the username and password that will eventually be verified against
the same information stored within the database. After the user enters their username and
password and clicks a button to execute the process, a common object will be used. That com-
mon object will be the EndUser class. It will be instantiated, and then the respective properties
will be populated with the username and password that will be subsequently passed from the
business logic layer to the data access layer to retrieve the information stored in the database.
Once retrieved from the database, the passwords will be compared, and if there is a match, the
remaining properties from the EndUser class will be populated and then saved in memory
while the user successfully logs in to the system. To review, an instantiated EndUser class is
populated only with the username and password, and upon a successful match from the
information in the database, the remaining information is populated so the EndUser object
can exist in memory while the user is interacting with the application.

Implementing the Business Logic Layer
You should now understand what the business logic layer is and why it is important to have
such a structure within the application architecture. The next step is to implement this piece
of the structure into the existing source code base and Visual Studio 2005 solution. The follow-
ing exercise will walk you through the process of adding the first item needed in the business
logic layer and subsequent class library project within Visual Studio 2005. This first item is the
IBusinessLogic interface from which all classes will be implemented.

An interface is a reference type that contains only abstract members. The members
contained in it can be only methods, indexers, properties, and events. It cannot contain any
constants, constructors, static members, or data fields. The interface contains only the decla-
ration of these members, and the implementation must be initiated from any of the classes
that implement the interface. All declarations within an interface will be public and thus
accessible from the classes that implement the interface. Although this is quite the textbook
explanation, you can think of interfaces as being contracts that specify to any class that imple-
ments them that they need to have specific methods or implementations to fulfill the contract.

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER152

7249ch13.qxd 11/13/06 9:20 PM Page 152

For example, refer to the following simple interface, which will require a method and
property:

interface IExample
{

bool GetName();

string Name
{

get;
set;

}
}

This interface is named IExample, which is the standard naming convention for interfaces.
In other words, an interface usually has the letter I as a prefix to the main word describing the
interface. A method returns a boolean data type named GetName() along with a property
named Name. Therefore, any class that implements the IExample interface will be required to
have a GetName() method as well as a Name property.

Now, let’s create a simple class that will implement the IExample interface:

public class ExampleClass : IExample
{

public ExampleClass()
{

}
}

The previous class named ExampleClass implements the IExample interface by specifying
it in the following line:

public class ExampleClass : IExample

However, at this point in the class, there is only a constructor, and it does not meet the con-
tract requirements of the interface and does not allow for the code to be compiled in the state
it is in at the moment. You need an implementation of the GetName() method along with the
Name property, as shown here:

public class ExampleClass : IExample
{

private string _name;

public ExampleClass()
{

}

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER 153

7249ch13.qxd 11/13/06 9:20 PM Page 153

public bool GetName()
{

bool complete = false;

// Code to complete the method and return a boolean.

return complete;
}

public string Name
{

get { return _name; }
set { _name = value; }

}
}

The class is now in contractual agreement with the IExample interface as a result of con-
taining all the required methods and properties; in other words, ExampleClass successfully
implements the IExample interface.

In the following exercise, you’ll add the interface that all classes within the business logic
layer will implement. This interface will be appropriately named IBusinessLogic and will have
a method named Invoke(), which will be the method from which all classes initiate the contact
with the data access layer to process its task and information.

Exercise: Implementing the Business Logic Layer into Visual Studio 2005

In this exercise, you’ll implement the business logic layer in your existing architecture by utilizing the business
logic class library project that you created when you originally set up the Visual Studio 2005 solution. Follow these
steps:

1. Open the Visual Studio 2005 solution if you closed it, and navigate to the Class Libraries solution folder
and then to the LittleItalyVineyard.BusinessLogic class library project. Right-click the project, and
select Add ➤ New Item, as shown in Figure 13-1.

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER154

7249ch13.qxd 11/13/06 9:20 PM Page 154

Figure 13-1. Adding an existing item

2. You will see the Add New Item dialog box; however, instead of adding a new class or configuration
item, select the Interface item, and name it IBusinessLogic, as shown in Figure 13-2.

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER 155

7249ch13.qxd 11/13/06 9:20 PM Page 155

Figure 13-2. Adding the IBusinessLogic interface

3. Click the Add button, which will add the IBusinessLogic interface to the LittleItalyVineyard.
BusinessLogic class library. You will see the following code:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.BusinessLogic
{

interface IBusinessLogic
{
}

}

4. The next step is to add any necessary methods or properties. For these purposes, you’ll add only one
method named Invoke(), which will look like the following:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.BusinessLogic
{

interface IBusinessLogic
{

void Invoke();
}

}

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER156

7249ch13.qxd 11/13/06 9:20 PM Page 156

5. Now that you have a completed interface, you’ll add the first class in the business logic layer that will
implement this interface. You will leave this class in its preliminary, or shell, condition but will imple-
ment the IBusinessLogic interface. Right-click the LittleItalyVineyard.BuinessLogic class library, and
add a new class named ProcessGetProducts, as shown in Figure 13-3.

Figure 13-3. Adding the ProcessGetProducts class

When finished entering the name of the class and clicking the Add button, you will see the following code:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.BusinessLogic
{

class ProcessGetProducts
{
}

}

6. Now that you have the basic shell of the ProcessGetProducts class, you have to add the implementation
of the IBusinessLogic interface as well as add a public class identifier, as described here:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetProducts : IBusinessLogic

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER 157

7249ch13.qxd 11/13/06 9:20 PM Page 157

{
}

}

7. You have now indicated that the ProcessGetProducts class will implement the IBusinessLogic interface,
but now you have to add the actual implementation. After you finish typing the name of the interface,
the Visual Studio 2005 integrated development environment (IDE) will give you a shortcut where you
can complete the implementation. Figure 13-4 shows the indicator just below the letter I in the word
IBusinessLogic.

Figure 13-4. The interface indicator

8. Move your cursor over the indicator, and click the down arrow to display the options shown in
Figure 13-5.

Figure 13-5. Choosing the implementation

9. You will see two options, Implement Interface IBusinessLogic and Explicitly Implement Interface
IBusinessLogic. Click the first option, and you will then see that the implementation is complete for the
class, as shown in Figure 13-6.

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER158

7249ch13.qxd 11/13/06 9:20 PM Page 158

Figure 13-6. The complete implementation from the IDE

You can see that the Invoke() method has been added to the ProcessGetProducts class for you. To have the code
compile at this point, you need to have the Invoke() method return a true or false value. In the next exercise, I will
explain in detail how to implement whether the value being returned is true or false.

Finally, Visual Studio has added some filler code that you can keep or discard. This includes the region section
added named IBusinessLogic Members and an exception within the method that throws a new exception saying
there is nothing implemented yet. It is up to you whether you keep the region, but you will eventually be imple-
menting the Invoke() method for the class, so you’ll delete the exception later.

You have learned how the business logic layer will work for the overall architecture and
system. All the classes within the business logic layer will implement the IBusinessLogic
interface, and thus the class will be required to implement the Invoke method to initiate the
communication from this section of the architecture to the data access layer and eventually
return the information to the presentation layer. In the next section of the chapter, I will take
everything a step further and demonstrate how the business logic layer will communicate
with the data access layer along with the common objects so you can gain a better under-
standing of how all the pieces will work together.

Getting Everything Working Together
Now that you have completed the initial piece of the business logic layer with the IBusinessLogic
interface, I will demonstrate how a class from the business logic layer will interact with the
data access portion of the architecture. You first need to revisit the data access layer and class
library project to add the necessary classes to process your requested data. Therefore, in the
following exercise, you’ll implement the business logic layer with the data access layer.

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER 159

7249ch13.qxd 11/13/06 9:20 PM Page 159

Exercise: Implementing the Business Logic Layer with the Data Access Layer

In this exercise, you will take a step back and look at the data access layer so you can fully understand just how
the business logic layer will be able to interact with it. Follow these steps:

1. Return to the Visual Studio 2005 solution and then to the LittleItalyVineyard.DataAccess class library
project. You’ll first add another folder to the project by selecting Add ➤ New Folder, as shown in
Figure 13-7. Name it Select. This directory will provide an additional namespace where all the classes
will reside that select data. After adding a new folder, you can then add the data access class that will
select the data for the exercise.

Figure 13-7. Adding a new folder

2. You now have a new folder or directory within the data access project named Select. Right-click this
new folder, and choose Add ➤ Class, as shown in Figure 13-8.

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER160

7249ch13.qxd 11/13/06 9:20 PM Page 160

Figure 13-8. Adding a new class

3. After choosing to add a new class, you will see the ever-so-common Add New Item dialog box where
you need to name your new class; name it ProductSelectByIDData, as shown in Figure 13-9.

Figure 13-9. Naming the new class

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER 161

7249ch13.qxd 11/13/06 9:20 PM Page 161

4. You now have your first class within the Select folder (or namespace) that you need to integrate with the
common objects. To accomplish this task, you will need to add a reference to the LittleItalyVineyard.Common
class library project. To do so, right-click the References directory in the data access class library, and
choose Add Reference, as shown in Figure 13-10.

Figure 13-10. Adding a reference

5. You will see the Add Reference dialog box. Proceed to the Projects tab, select the LittleItalyVineyard.Common
class library project, and finally click the OK button, as shown in Figure 13-11.

Figure 13-11. Selecting the LittleItalyVineyard.Common project reference

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER162

7249ch13.qxd 11/13/06 9:20 PM Page 162

6. The data access project now has a reference to the common object via the project within the Visual
Studio 2005 solution. You can now declare, within the code, the common object’s namespace to the
ProductSelectByIDData class, as shown in the following code:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductSelectByIDData
{

}
}

7. You can now add some code that will contain the common object of the Product class, which will be
represented with a property and associated field:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductSelectByIDData : DataAccessBase
{

private Product _product;

public ProductSelectByIDData()
{

}

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

}

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER 163

7249ch13.qxd 11/13/06 9:20 PM Page 163

How It Works

Within the class, you have added the reference to the common objects and then added a field, _prod-
uct, along with its associated property, Product.

8. You have not implemented the property for the Product class so that the class can be instantiated else-
where in the architecture, be passed into the ProductSelectByIDData class by the Product property, and
subsequently be used to query the database. To actually query the information from the database, you
need to add some code. This code will utilize the SQLHelper class from the Microsoft Data Access
Application Block, but first you need to add its namespace, as shown in the following code, along with
an additional method named Get, which will return a DataSet:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductSelectByIDData : DataAccessBase
{

private Product _product;

public ProductSelectByIDData()
{

}

public DataSet Get()
{

}

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

}

How It Works

You have added the Get() method that will return a DataSet of the information and records that will be
queried from the database.

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER164

7249ch13.qxd 11/13/06 9:20 PM Page 164

9. To further enhance and build upon the class, you need to first specify the name of the stored procedure
that will be used to query the database for a product with a specific ID. To accomplish this, proceed to
the StoredProcedure class that is also located within the data access project, and add the name of the
stored procedure to the Name enumeration, as follows:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess
{

public class StoredProcedure
{

public enum Name
{

ProductByID_Select
}

}
}

After adding the name of the stored procedure, SelectProductByID, return to the ProductSelectByIDData
class.

10. Now that you have the name of the stored procedure that will be used, you need to specify that name
in the constructor, as shown here:

public ProductSelectByIDData()
{

StoredProcedureName =➥

StoredProcedure.Name.ProductByID_Select.ToString();
}

You can see that you are using the StoredProcedureName property from the DataAccessBase class to
be equal to that of the SelectProductByID enumeration that is finally cast to a string data type by
means of the ToString() method. Using the ToString() method will allow you to use the string represen-
tation of the enumeration as opposed to the numeric value.

11. You are now ready to complete the Get() method, which will utilize the SQLHelper class from the
Microsoft Data Application Blocks and take into account any parameters that will need to be specified
for the stored procedure. In this case, you have a single stored procedure that specifies the product ID.
To accomplish this, add a new class within the ProductSelectByIDData class file named
ProductSelectByIDDataParameters, as shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER 165

7249ch13.qxd 11/13/06 9:20 PM Page 165

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductSelectByIDData : DataAccessBase
{

private Product _product;

public ProductSelectByIDData()
{

}

public DataSet Get()
{

}

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

public class ProductSelectByIDDataParameters
{

private Product _product;
private SqlParameter[] _parameters;

public ProductSelectByIDDataParameters(Product product)
{

Product = product;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@ProductID" , Product.ProductID)
};

Parameters = parameters;
}

public Product Product
{

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER166

7249ch13.qxd 11/13/06 9:20 PM Page 166

get { return _product; }
set { _product = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

You can see that within the new parameter class you have added a collection of SQL parameters con-
tained in the Build() method that is called in the constructor. Finally, the parameter values are obtained
from the common object class; in this case, the Product class is passed along to the constructor and
subsequently added to the Product class in the form of a property.

12. The final step within the ProductSelectByIDData class is to add the code that will actually use the
DataBaseHelper class you created in the previous chapter to return a DataSet of the product specified
by the ID. To accomplish this, add the following code to the Get() method:

public DataSet Get()
{

DataSet ds;

ProductSelectByIDDataParameters _productselectbyiddataparameters➥

= new ProductSelectByIDDataParameters(Product);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString ,

_productselectbyiddataparameters.Parameters);

return ds;
}

How It Works

Within the Get() method, a new DataSet object is declared and then subsequently used with the Data-
BaseHelper class. The ProductSelectByIDDataParameters class will be instantiated, and its Parameters
property will be passed into the dbhelper class.

This will now give you the entire code within the class to accomplish everything you need to query the
database for a specific product. Prior to moving on to the business logic class to utilize what you have
just implemented, let’s look at the code in its entirety:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER 167

7249ch13.qxd 11/13/06 9:20 PM Page 167

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductSelectByIDData : DataAccessBase
{

private Product _product;

public ProductSelectByIDData()
{

}

public DataSet Get()
{

DataSet ds;

ProductSelectByIDDataParameters
_productselectbyiddataparameters =➥

new ProductSelectByIDDataParameters(Product);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString ,

productselectbyiddataparameters.Parameters);

return ds;
}

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

public class ProductSelectByIDDataParameters
{

private Product _product;
private SqlParameter[] _parameters;

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER168

7249ch13.qxd 11/13/06 9:20 PM Page 168

public ProductSelectByIDDataParameters(Product product)
{

Product = product;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@ProductID" , Product.ProductID)
};

Parameters = parameters;
}

public Product Product
{

get { return _product; }
set { _product = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

How It Works

To summarize the complete functionality that you have included, you added the ProductSelectByIDData class
and then the ProductSelectByIDDataParameters class to handle all the parameters needed. The Product
common class is implemented, and then the ProductID is passed into the ProductSelectByIDDataParameters
class by the Product class to specify the parameter needed.

13. To finalize the exercise, return to the business logic project library. Because you added a reference to
the common objects in the data access project, you need to add a reference to not only the common
project (see Figure 13-12) but also to the data access project (see Figure 13-13) within the business
logic class library project.

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER 169

7249ch13.qxd 11/13/06 9:20 PM Page 169

Figure 13-12. Selecting the LittleItalyVineyard.Common project reference

Figure 13-13. Selecting the LittleItalyVineyard.DataAccess project reference

14. Now that you have the necessary references, add a new class named ProcessGetProductByID. After
successfully adding the new class, you need to make some modifications to the class, such as adding
the references and implementing the interface, as shown here:

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER170

7249ch13.qxd 11/13/06 9:20 PM Page 170

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetProductByID : IBusinessLogic
{

private Product _product;
private DataSet _resultset;

public ProcessGetProductByID()
{

}

public void Invoke()
{

ProductSelectByIDData selectproduct➥

= new ProductSelectByIDData();
selectproduct.Product = Product;
ResultSet = selectproduct.Get();

Product.Name = ResultSet. ➥

Tables[0].Rows[0]["ProductName"].ToString();
Product.Description = ResultSet. ➥

Tables[0].Rows[0]["Description"].ToString();
Product.Price = Convert. ➥

ToDecimal(ResultSet.Tables[0].Rows[0]["Price"].ToString());
Product.ImageID = int. ➥

Parse(ResultSet.Tables[0].Rows[0]["ProductImageID"].ToString());
Product.ProductCategory. ➥

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER 171

7249ch13.qxd 11/13/06 9:20 PM Page 171

ProductCategoryName = ResultSet. ➥

Tables[0].Rows[0]["ProductCategoryName"].ToString();
}

public Product Product
{

get { return _product; }
set { _product = value; }

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

You have added quite a bit of code in this class. To review, you implemented the IBusinessLogic interface along
with its required Invoke() method that will call the ProductSelectByIDData class located in the data access layer. In
Chapter 16, the Product class will be instantiated within the presentation layer and populated with the product ID.
This will be subsequently passed to the business logic class and then executed against the database via the Invoke()
method calling the data access class. Finally, a DataSet will be returned from the data access class that is then in
turn passed back by the ResultSet property to the presentation layer, which will ultimately be bound to another
object for display purposes.

This exercise was quite lengthy. However, it did present a great deal of material that is
necessary to establish the pattern of the overall application and architecture. You can repeat
these steps for each process that is requesting data, updating, adding, or deleting data.

Summary
You have arrived at the end of the business logic tier of the architecture. In this chapter, you
examined how the common objects will be utilized within the data access and business logic
tiers of the application architecture. It is important to have a thorough understanding of how
these tiers of the architecture work in unison before you move to the final architecture tier to
be discussed—the presentation layer.

CHAPTER 13 ■ CREATING THE BUSINESS LOGIC LAYER172

7249ch13.qxd 11/13/06 9:20 PM Page 172

Exploring Your Integration
Options

This chapter will cover an integral part of the system and overall architecture. Although this
chapter is not about a dedicated layer of the complete architecture, the functionality discussed
in this chapter is closely related to the architecture and is similar to how the common objects
and classes are integrated throughout the system. As the name of the chapter suggests, this
chapter will cover functionality for integration or specific operations. What does this really
mean? This refers to when an application needs to perform an action or task repeatedly. For
instance, virtually every software system at some point will have to send an e-mail, log an
exception or other information, interact with a message queue, or, perhaps one of the most
popular tasks, consume and expose web services.

This chapter will deal with how to organize and manage these portions of the application.
I’ll refer to the segment that encapsulates the different integrations as the operational manager.

Throughout the chapter, you will focus primarily on establishing a solid infrastructure
that will allow you to revisit this segment of the architecture later to fully implement its func-
tionality. In brief, this chapter will cover the following topics:

• Introducing the operational manager

• Implementing it into the solution

• Integrating web services

• Handling exceptions

Introducing the Operational Manager
As mentioned, essentially all software applications need to perform redundant tasks throughout
the life of the system. When you have this repetitive code or functionality, your first thought
might be to create functions that execute the code and that can be called from anywhere
needed within the source code base. Within the case study system, you will be implementing
this concept; you’ll also take it a step further. The additional step is that you’ll organize and
manage these functions in separate classes all within its own namespace and class library,
thus resulting in a separate DLL.

173

C H A P T E R 1 4

■ ■ ■

7249ch14.qxd 11/13/06 9:20 PM Page 173

Why take this extra step of organization? In short, this additional organization will enhance
scalability, make debugging easier, improve maintenance, and even give you the ability to reuse
the code in other projects:

Scalability: When you have an operational manager implemented within your software
application, the functionality it performs is encapsulated and organized in only one sec-
tion of the system. When the unavoidable time arises that it needs to be changed or updated,
your changes will have to be implemented in only one section of the system and architec-
ture. If the change required is more of an enhancement to the existing functionality, you
can alter the existing class as desired—without having to redo your entire system.

Make debugging easier: This will become evident when implementing interaction with
outside services or, namely, web services. During the course of the overall implementa-
tion, you’ll have to debug a great deal of code via stepping through the code, and having
this organized in the operational manager will ensure that this task is as manageable as
possible.

Easy maintenance: You’ll get easy maintenance for adding or removing any functionality.

Code reuse: Designing the code so it can be reused will undoubtedly save time in many
future development efforts. For example, you will not have to retest the functionality
since this has already been performed when it was first developed.

In the next section, you’ll learn about how to implement the operational manager into the
system.

Implementing the Operational Manager
Now that you understand why having an operational segment or manager is beneficial to your
system, you need to know how to implement it. As mentioned, I will be introducing this segment
as a separate class library similar to that of the common objects, which too had their own class
library.

In the next exercise, you will be taking functionality from the .NET Framework by using
specific classes and libraries. From these classes, you will present a wrapper; more simply put,
you’ll write your own code around the functionality of the .NET classes to provide a better
method of managing the functionality within your application. Specifically, you’ll implement
an e-mail manager as one part of the operational manager. Upon completion, you will have
a fully functional segment of the application that will be able to send e-mail messages.

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS174

7249ch14.qxd 11/13/06 9:20 PM Page 174

Exercise: Implementing the E-mail Manager

In this exercise, you’ll add the e-mail manager to the operational manager. Upon completion, the e-mail manager
will be able to send e-mail messages from within the application. Follow these steps:

1. Return to the Visual Studio 2005 solution and to the LittleItalyVineyard.Operational class library. Right-
click the project, and choose Add ➤ Class, as shown in Figure 14-1.

Figure 14-1. Adding a new class

2. You’ll then see the Add New Item dialog box. Enter the name of the new class, EmailManager, as
shown in Figure 14-2, and click the Add button.

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS 175

7249ch14.qxd 11/13/06 9:20 PM Page 175

Figure 14-2. Add New Item dialog box

3. You will now see the shell code of the new class. Since you are implementing functionality to send
e-mail messages from the application, you need to add two namespaces to the code. The namespaces
you need to add are System.Net.Mail and System.Configuration. The class code resembles the following:

using System;
using System.Collections.Generic;
using System.Text;
using System.Net.Mail;
using System.Configuration;

namespace LittleItalyVineyard.Operational
{

public class EmailManager
{

}
}

4. You now have the namespace added to the class, which you will utilize to successfully send e-mail
messages. Next you need to add a structured way in which you can pass the information into the
EmailManager class. You will accomplish this by adding a struct within the same class file named
EmailContents. The code will resemble the following:

using System;
using System.Collections.Generic;
using System.Text;
using System.Net.Mail;
using System.Configuration;

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS176

7249ch14.qxd 11/13/06 9:20 PM Page 176

namespace LittleItalyVineyard.Operational
{

public class EmailManager
{

}

public struct EmailContents
{

public string To;
public string FromName;
public string FromEmailAddress;
public string Subject;
public string Body;

}
}

5. Now that the struct is in place, you can add the heart of the class that will actually send the e-mail
messages. To do so, add a function to the EmailManager class named Send, which will have a parame-
ter of the struct EmailContents and will return a boolean value. The code will now resemble the
following:

using System;
using System.Collections.Generic;
using System.Text;
using System.Net.Mail;
using System.Configuration;

namespace LittleItalyVineyard.Operational
{

public class EmailManager
{

public EmailManager()
{

}

public void Send(EmailContents emailcontents)
{

}
}

public struct EmailContents
{

public string To;
public string FromName;
public string FromEmailAddress;

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS 177

7249ch14.qxd 11/13/06 9:20 PM Page 177

public string Subject;
public string Body;

}
}

6. The basic function named Send is in place; now you need to add the actual code from the
System.Net.Mail library that will send the e-mail messages. More specifically, you will use the
MailMessage class along with the SmtpClient class, as demonstrated here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Net.Mail;
using System.Configuration;

namespace LittleItalyVineyard.Operational
{

public class EmailManager
{

public EmailManager()
{

}

public void Send(EmailContents emailcontents)
{

SmtpClient client = new SmtpClient(SMTPServerName);
client.UseDefaultCredentials = true;
MailAddress from = new MailAddress➥

(emailcontents.FromEmailAddress , emailcontents.FromName);
MailAddress to = new MailAddress(ToAddress);

MailMessage message = new MailMessage(from , to);

message.Subject = emailcontents.Subject;
message.Body = Utilities.FormatText➥

(emailcontents.Body , true);
message.IsBodyHtml = true;

try
{

client.Send(message);
IsSent = true;

}
catch (Exception ex)
{

throw ex;
}

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS178

7249ch14.qxd 11/13/06 9:20 PM Page 178

}

public bool IsSent
{

get { return _issent; }
set { _issent = value; }

}

private string SMTPServerName
{

get { return ConfigurationManager. ➥

AppSettings["SMTPServer"]; }
}

private string ToAddress
{

get { return ConfigurationManager. ➥

AppSettings["ToAddress"]; }

}

public struct EmailContents
{

public string To;
public string FromName;
public string FromEmailAddress;
public string Subject;
public string Body;

}
}

How It Works

You have added a good amount of code to provide the functionality to send e-mail messages. Basically,
the first section instantiates an SmtpClient class and specifies the name of the mail server that will be
used. The name of the mail server, SMTPServerName, is a read-only property that returns a string con-
figured within the appSettings tag of the Web.config file. For security and credential purposes, the
UseDefaultCredentials property is set to true. By using this property, the default credentials of the user
who is logged in will be used with the SMTP server sending the message. Next, the MailAddress class
is instantiated two times to set the e-mail address and name that the message will display that it is
originating from as well as the e-mail address to which the message is being sent. The e-mail address
that the message is being sent to is retrieved from another property, ToAddress, which is a read-only
property that retrieves a value from AppSettings as well from the Web.config file. The function is com-
pleted by populating the subject and body from the struct and finally sent by using the Send method of
the SmtpClient class. Upon successful completion, the IsSent boolean property will be set to true so
that the calling code can reference this property to determine the success.

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS 179

7249ch14.qxd 11/13/06 9:20 PM Page 179

7. You will notice within the MailMessage’s Body property that you use a class named Utilities along with
a static method named FormatText. You have not yet implemented this class, but you will do so now.
Within the operational project, add a new class named Utilities, and add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.IO;

namespace LittleItalyVineyard.Operational
{

public class Utilities
{

public static string FormatText(string text , bool allow)
{

string formatted = "";

StringBuilder sb = new StringBuilder(text);
sb.Replace(" " , " ");
if (!allow)
{

sb.Replace("
" , Environment.NewLine);
sb.Replace(" " , " ");
formatted = sb.ToString();

}
else
{

StringReader sr = new StringReader(sb.ToString());
StringWriter sw = new StringWriter();
while (sr.Peek() > -1)
{

string temp = sr.ReadLine();
sw.Write(temp + "
");

}

formatted = sw.GetStringBuilder().ToString();
}
return formatted;

}
}

}

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS180

7249ch14.qxd 11/13/06 9:20 PM Page 180

The purpose of this function is to parse the spaces and returns that are included in a message. In other
words, when a user enters text in a text box and then presses the Enter key, this will not be repre-
sented in HTML format correctly. It will be represented in a straight line and will not maintain any of the
breaks or paragraph formats. Therefore, with this function, the text will be parsed, and the proper
HTML tags will be added so that the original formatting will be maintained.

8. As demonstrated, you now have the code in place for sending e-mail messages with information that
will be populated with the EmailContent struct. However, the last piece to implement is the name of the
Simple Mail Transfer Protocol (SMTP) server and the address to which the e-mail messages will be
delivered. To accomplish this, proceed to the Web.config file, and add two keys within the appSettings
tag, as demonstrated here:

<configuration>
<appSettings>

<add key="SMTPServerName" value="localhost"/>
<add key="ToAddress" value="info@littleitalyvineyards.com"/>

</appSettings>
...

The code is now complete, so you have a fully functional piece of the operational manager segment that will send
an e-mail message from anywhere within the application. Even though you have a fully functional piece of the
operational manager, at this time in the book, the EmailManager class will be sufficient. However, later you will in
all likelihood make some minor changes to the EmailManager class.

Implementing Web Services
This section will address how to integrate web services into the overall architecture and more
specifically into the operational manager. Although this book will be utilizing web services,
the section is not meant to be a thorough reference on web services; the topic warrants an
entire book. For example, see the upcoming Beginning ASP.NET 2.0 Web Services in C# from
Apress. However, I’ll discuss how to implement and use web services throughout the case
study system and application.

To fully demonstrate how to integrate a web service into your application, the following
exercise explains how to connect to the PayPal payment-processing system. This exercise will
demonstrate the initial steps of how to set up the basic infrastructure for the PayPal web service.
Chapter 18 gives more information about how to set up a PayPal account, how to write the code
that will utilize the web service, and finally how to transact a credit card payment.

Exercise: Using the PayPal Web Service

This exercise demonstrates how to implement a web service into the operational manager segment of the archi-
tecture. You’ll add a new class that will be dedicated to the PayPal implementation and add the web reference to
the project. In this exercise, you will need a live Internet connection to connect to the web service provided by
PayPal. Follow these steps:

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS 181

7249ch14.qxd 11/13/06 9:20 PM Page 181

1. Add a new class to the project by right-clicking the LittleItalyVineyard.Operational class library and
choosing Add ➤ Class, as shown in Figure 14-3.

Figure 14-3. Adding the new class

2. You will see the Add New Item dialog box where you need to enter the name the new class,
PayPalManager, as shown in Figure 14-4.

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS182

7249ch14.qxd 11/13/06 9:20 PM Page 182

Figure 14-4. Naming the PayPalManager class

3. You have now added the PayPalManager class to the LittleItalyVineyard.Operational project. You now
need to add the web reference to the project for the test account within PayPal. This test account is
called the sandbox, and it will allow you to use the PayPal application programming interface (API) and
test all the functionality without actually processing a real credit card. To add the web reference, right-click
the References directory, and choose the Add Web Reference menu item, as shown in Figure 14-5.

Figure 14-5. Adding the web reference

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS 183

7249ch14.qxd 11/13/06 9:20 PM Page 183

You will see the Add Web Reference dialog box, as shown in Figure 14-6.

Figure 14-6. Add Web Reference dialog box

4. As shown in Figure 14-6, you now have the ability to browse for web services within the current solu-
tion, on the local machine, on the Universal Description, Discovery, and Integration (UDDI) servers (if
installed), or finally via a uniform resource locator (URL) that you can manually specify. As mentioned,
you are will connect only to the sandbox PayPal account for the time being. The URL for the PayPal
sandbox is as follows: http://www.sandbox.paypal.com/wsdl/PayPalSvc.wsdl. Enter this
URL in the text box provided, and click the Go button to connect to the service. This will connect you to
the Web Services Description Language (WSDL) file provided by PayPal, as shown in Figure 14-7. The
content of the WSDL file is quite extensive.

5. Now that you are able to browse the PayPal service as well as view the WSDL content, you need to
give it a name that you will use to refer to it within your code. To do so, in the Web Reference Name
text box, enter PayPalAPI.Sandbox, as shown in Figure 14-8, and click the Add Reference button.

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS184

7249ch14.qxd 11/13/06 9:20 PM Page 184

Figure 14-7. Browsing PayPalAPIInterfaceService

Figure 14-8. Naming and adding the reference

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS 185

7249ch14.qxd 11/13/06 9:20 PM Page 185

6. After adding the PayPal web reference, you are able to view that a number of other references are
added to the LittleItalyVineyard.Operational class library project, as shown in Figure 14-9.

Figure 14-9. Viewing the references

7. All the necessary references are in place to use the service; therefore, return to the PayPalManager
class you previously created. You will need to add the newly created PayPal namespace you created;
the code resembles the following:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Operational.PayPalAPI.Sandbox;

namespace LittleItalyVineyard.Operational
{

public class PayPalManager
{

public PayPalManager()
{

}
}

}

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS186

7249ch14.qxd 11/13/06 9:20 PM Page 186

You now have a functional class within your operational manager segment of the architecture. You have not imple-
mented any of the functionality that will communicate with the PayPal servers and transact a credit card payment,
but you have the shell upon which you can build.

Performing Some Exception Handling
Regardless of what type of software application you decide to build, it is inevitable that at some
point it will run into unexpected errors or exceptions during normal processing. During the
development, however, you should make every attempt to keep this occurrence to a minimum.
With that being said, you need to be prepared to gracefully handle any errors and exceptions
and track the errors by logging them in some way.

This discussion is, of course, referring to exception handling within a software applica-
tion. Within the case study, you’ll implement exception handling by using the Global.asax file
and the Application_Error event. Along with this, you will specify a default error page within
the Web.config file that will be displayed anytime an exception occurs during the user experi-
ence. This will accomplish the tasks of gracefully handling an exception and showing the user
that an error occurred; in addition, a more pleasant web page than the default ASP.NET excep-
tion page will be displayed.

The following exercise in this chapter demonstrates the tasks necessary to implement the
overall exception handling.

Exercise: Implementing the Exception Handling

In this exercise, you will add the Global.asax file and default error web page and handle any exceptions as gracefully as
possible. Follow these steps:

1. Proceed to the web project, and add the Global.asax file by right-clicking the project, choosing to add
a new item, and then choosing the Global Application Class item. Then click the Add button; you’ll see
the following code within the file:

<%@ Application Language="C#" %>

<script runat="server">

void Application_Start(object sender, EventArgs e)
{

// Code that runs on application startup

}

void Application_End(object sender, EventArgs e)
{

// Code that runs on application shutdown

}

void Application_Error(object sender, EventArgs e)

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS 187

7249ch14.qxd 11/13/06 9:20 PM Page 187

{
// Code that runs when an unhandled error occurs

}

void Session_Start(object sender, EventArgs e)
{

// Code that runs when a new session is started

}

void Session_End(object sender, EventArgs e)
{

// Code that runs when a session ends.
// Note: The Session_End event is raised only
// when the sessionstate mode
// is set to InProc in the Web.config file.
// If session mode is set to StateServer
// or SQLServer, the event is not raised.

}

</script>

Notice that the Global.asax page does not have an associated code file or .cs file. Each of the methods
included has associated comments about its individual functionality.

2. You’ll focus on the Application_Error event for your exception-handling purposes. The first line of code
to implement is to capture the last exception that occurred on the server side. You will accomplish this
by adding the following code:

void Application_Error(object sender, EventArgs e)
{

// Code that runs when an unhandled error occurs
Exception ex = Server.GetLastError();

}

How It Works

This line of code is quite simple. An exception class is declared as the variable ex, which is then set
equal to the GetLastError() function of the Server class. The GetLastError() function returns an exception
class containing the last exception that occurred on the server.

3. You have now implemented the code that will capture the exception information. However, now you’ll
add the functionality that will gracefully handle the exception within the user experience. To do so, redi-
rect your attention to the Web.config file within the web project. Look specifically at the System.Web
tags, and add the following:

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS188

7249ch14.qxd 11/13/06 9:20 PM Page 188

<system.web>

<customErrors mode="On" defaultRedirect="ErrorPage.aspx">
</customErrors>

</system.web>

How It Works

Within the System.Web tags, focus your attention on the customErrors tags. I will address two ele-
ments within the customErrors tag. The first is the mode element you set to On, which specifies the
application will use custom errors. The second is defaultRedirect, which you set to ErrorPage.aspx. This
web page is now designated to display when an exception occurs, which you will add to the web proj-
ect in the next chapter. The user will now know whether an exception occurs and will not see the
default ASP.NET exception web page, which can be quite unattractive.

4. The next task to implement for the exception handling is to log or record the information that is con-
tained within the exception that occurred. You can log the information in many different ways. These
different methods include entering the information to the database, sending an e-mail message, or log-
ging to a file. For these purposes, you will be simply logging the information to a text file that you will be
able to refer to at any time. So, return to the Utilities class found in the LittleItalyVineyard.Operational
namespace and project. Add the following method to the class:

public static void LogException(Exception ex)
{

using (StreamWriter sw = new StreamWriter➥

(HttpContext.Current.Server.MapPath➥

("~/ExceptionLog/LogFile.txt") , true))
{

sw.WriteLine(DateTime.Now.ToShortDateString() +
Environment.NewLine +

ex.InnerException.ToString() +
Environment.NewLine +
Environment.NewLine);

}
}

How It Works

The LogException method is a static method, meaning you do not need a new instantiation, and it
has a parameter of an Exception class. A using statement is implemented with the StreamWriter
class to append text to a specified text file with the path. By having the using declaration, all
resources will be disposed of regarding the StreamWriter after the code is executed; thus, you don’t
need to close or explicitly dispose of the StreamWriter. Then, the full file path is determined by using
the current HTTPContext and then the Server.MapPath method. This will return the physical file path
of the specified directory and the filename, ~/ExceptionLog/LogFile.txt. You have not yet added the

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS 189

7249ch14.qxd 11/13/06 9:20 PM Page 189

ExceptionLog directory or the LogFile.txt file, but you will do so in the next step. Finally, the WriteLine
method of the StreamWriter will take the current date and then append the string to the InnerException
of the exception class that was passed into the class as a parameter. Then for some formatting, the
NewLine function adds some spacing to the log file for better readability.

5. For the final task of the exercise, you need to add the new folder to the web project named ExceptionLog
and, within the newly created directory, add a text file named LogFile.txt. After completing this, you are
all set for writing the exceptions to the log file. Return to the Global.asax file where you captured the
server’s last exception. Add the following code:

void Application_Error(object sender, EventArgs e)
{

// Code that runs when an unhandled error occurs
Exception ex = Server.GetLastError();
LittleItalyVineyard.Operational.Utilities.LogException(ex);

}

The line of code added to the Application_Error event declares the LogException class and passes the
server’s last exception class as the parameter.

You have arrived at the end of the exercise, and the case study application now has exception handling incorporated.
As you add more and more code to your application, you will notice that try/catch statements are used in the data
access layer code. However, in the presentation layer, you will not use try/catch statements. Thus, if an exception
occurs, it will be unhandled, and the information will be logged and gracefully handled for the user. If the excep-
tion occurs below the presentation layer, the exception will be thrown up the stack.

Summary
This chapter covered your integration options. Although this topic is not a specific tier of the
architecture, it is a close counterpart of the architecture and is similar to how the common
objects and classes are integrated throughout the system.

As mentioned a number of times in the chapter, especially with the PayPal web service,
this chapter was intended to merely introduce the concepts and build the foundation of the
operational manager within the system architecture. Chapter 18 will be dedicated to estab-
lishing a PayPal account and test account and will include step-by-step directions on how to
implement it into the system to ensure secure credit card transactions, which will ultimately
result in selling your products online.

CHAPTER 14 ■ EXPLORING YOUR INTEGRATION OPTIONS190

7249ch14.qxd 11/13/06 9:20 PM Page 190

Creating the Presentation Layer

At long last, you have arrived at the final tier of the architecture of your application. I am, of
course, talking about the presentation layer, which serves an important purpose for your over-
all application. Each tier of the architecture is equally important, but the presentation layer is
the only tier that is readily visible to the users. The data access layer and business logic layers
work completely in the background, and although they are important to what the user will
ultimately view on the browser, only the developers will see those tiers. However, the presen-
tation layer contains the Hypertext Markup Language (HTML) along with the graphics and
associated styles. It will set the standard for how user-friendly the navigation is and the overall
look and feel of the application, which are vital aspects of any system.

In this chapter, you will examine and implement the presentation layer, providing the
application with the best possible look and feel and with a clean, consistent, and concise
navigation.

Specifically, I’ll discuss the following in this chapter:

• The overall design of the HTML layout

• The master pages

• The individual web pages

Looking at the Overall Design
The key to any successful software application, especially web applications, is to have an aes-
thetically pleasing user interface. The reason for this, in short, is that the user interface, along
with the associated graphics, is what the end user will see. And as they say, you have only one
time to make a first impression. This is the case when presenting your online storefront to
potential customers. On average, if users see a pleasant design and they experience easy navi-
gation, thus allowing them to find what they are looking for, they will most likely stay at your
site and make purchases.

For the application for the Little Italy Vineyards winery, you will start with an already
completed HTML design including wine- and vineyard-related graphics. The extremely
talented graphic designers and software engineers Eric Starkowicz and Jeff Reese, who I have
worked with on several projects over the years, created this design. They will provide the
overall layout and design as well as the associated styles and the HTML code. Figure 15-1
shows the initial design of the Little Italy Vineyard web application. You will use this design
as a starting point so you are ready when it is time to add server controls to the web forms.

191

C H A P T E R 1 5

■ ■ ■

7249ch15.qxd 11/13/06 9:21 PM Page 191

Figure 15-1. The initial Little Italy Vineyards design

As you can see, the design has an exceptionally clean and professional-looking layout.
The design includes an image of a vineyard with long rows of grapes going into the horizon. At
the top of the design, the empty area is where the logo of the vineyard will appear. Below that,
four links to the other web pages in the site will appear. You’ll define the names of these specific
links later in the chapter. Lastly, toward the bottom of the design is a bottle of wine, a wine
glass, and some cheese followed by some grapes on the right side.

Overall, this initial design will provide an excellent layout for the vineyard and provide
easy navigation along with a professional, clean-looking interface. The remaining work to be
completed is as follows: you’ll establish the links and the logo in a master page in which all the
associated web pages will be incorporated. In the next section, I will begin outlining how to
implement the master page with the associated HTML.

■Note You can find all the images in the Images folder and the style sheet in the CSS folder. Review these
items in the sample code that accompanies this book.

Implementing the Master Page
Now that you have the initial design, you need to finalize the design by implementing a master
page. This master page will include the links for the individual pages of the website, as well as
the images and HTML that will be included on all the pages. Prior to jumping directly into
implementing the master page, I’ll explain what exactly a master page is and why you should
use such a technique.

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER192

7249ch15.qxd 11/13/06 9:21 PM Page 192

A master page is a new concept introduced in ASP.NET 2.0; it allows a common base file to
provide a consistent design for all the web pages in your web application. The content can
consist of HTML as well as .NET-compliant source code. After you have determined what
common features the web pages will be using, you add these elements to the master page.
Finally, for the section that has unique content on web forms that use the master page, you
place a control, called a ContentPlaceHolder, in the master page. For subsequent web pages
you add, you can specify that they utilize the master page, so all their content will be inherited
from that master page.

To create the design for the vineyard web application shown in Figure 15-1, you’ll
include the links and the logo. You’ll include all the content, except for what will appear in
the middle section of the design, in the master page. The middle section is where you’ll use
the ContentPlaceHolder and subsequently where the content from the other web pages will
appear when you implement it throughout the remainder of this book.

Exercise: Implementing the Master Page

In this exercise, you will implement the master page in the Visual Studio 2005 solution and add the associated
HTML code and design. Follow these steps:

1. Return to the Visual Studio 2005 solution, navigate to the web project, and right-click. Choose the Add
New Item menu item, as shown in Figure 15-2.

Figure 15-2. Adding a new item to the web project

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 193

7249ch15.qxd 11/13/06 9:21 PM Page 193

2. You will then see the Add New Item dialog box. Choose Master Page from the items available, and then
name the master page Main, as shown in Figure 15-3. Click the Add button.

Figure 15-3. Adding and naming the master page

3. You now have a master page added to your presentation layer. Upon the master page being added, you
will see the following HTML code generated from the master page:

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="Main.master.cs"
Inherits="Main" %>

<!DOCTYPE html➥

PUBLIC "-//W3C//DTD XHTML 1.0➥

Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD
/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
<title>Untitled Page</title>
</head>
<body>
<form id="form1" runat="server">
<div>
<asp:contentplaceholder id="ContentPlaceHolder1" runat="server">
</asp:contentplaceholder>

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER194

7249ch15.qxd 11/13/06 9:21 PM Page 194

</div>
</form>
</body>
</html>

4. You can see the basic HTML layout with the ContentPlaceHolder control. Rename the ContentPlaceHolder
control to contentplaceholderMain, as shown here:

<asp:contentplaceholder id="contentplaceholderMain" runat="server">
</asp:contentplaceholder>

5. The master page now has a basic shell. You next need to add the HTML that has been designed specif-
ically for the vineyard application, including the links, logo, and all the other elements in the base design.
The following is the HTML followed by the master page:

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="Main.master.cs"
Inherits="Main" %>

<html>
<head runat="server">

<title></title>
<meta http-equiv="Content-Style-Type" content="text/css" />
<link href="Css/style.css" type="text/css" rel="stylesheet" />
<script language="javascript" src="Scripts/scriptLibrary.js"></script>

</head>
<body>

<form id="form1" runat="server">
<table width="100%" height="100%" border="0" cellpadding="0"
cellspacing="0"
style="background-image:
url(images/til_1.jpg);">

<tr>
<td> </td>
<td width="490" align="left" valign="top">
<table width="490" border="0" cellspacing="0"

cellpadding="0">
<tr>
<td width="10"> </td>
<td width="470" align="left" valign="top">

<table width="470" height="100%" border="0"
cellpadding="0" cellspacing="0">

<tr>
<td height="164" align="left" valign="top"
background="images/top_1.jpg">
<div style="padding-left: 156px; padding-top: 69px">
<img src="images/logo.jpg"

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 195

7249ch15.qxd 11/13/06 9:21 PM Page 195

width="159" height="36" border="0"></div>
</td>
</tr>
<tr>

<td height="43" align="left" valign="top">
<table width="100%" border="0" cellspacing="0"
cellpadding="0">

<tr>
<td><img src="images/left.jpg" width="10"
height="43">

</td>
<td>
<img src="images/about.jpg" width="114"
height="43" border="0">

</td>
<td>
<img src="images/vineyard.jpg" width="112"
height="43" border="0">
</td>
<td>
<img src="images/faq.jpg" width="112"
height="43" border="0">
</td>
<td>
<img src="images/contact.jpg" width="112"
height="43" border="0">
</td>
<td><img src="images/right.jpg" width="10"
height="43"></td>

</tr>
</table>
</td>
</tr>
<tr>

<td height="172" align="right" valign="top"
background="images/back_1.jpg">
<div style="padding-left: 0px; padding-top: 14px;
padding-right: 23px; padding-bottom: 0px">

</div>
</td>
</tr>
<tr>

<td height="100%" align="left" valign="top">
<table width="100%" height="100%"
border="0" cellpadding="0"

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER196

7249ch15.qxd 11/13/06 9:21 PM Page 196

cellspacing="0" background="images/rep_3.jpg">
<tr align="left" valign="top">

<td background="images/rep_left.jpg" style="width: 10px">
</td>
<td height="100%">
<table width="450" height="100%" border="0"
cellpadding="0" cellspacing="0">
<tr align="left" valign="top">
<td background="images/rep_line.jpg"
bgcolor="#F3E9BF"
style="background-repeat: repeat-y;
background-position: top left;">
<asp:ContentPlaceHolder ID="contentplaceholderMain"
runat="server"></asp:ContentPlaceHolder>

</td>
</tr>
</table>
</td>

<td width="10" background="images/rep_right.jpg">

</td>

</tr>
<tr>
<td colspan="3" valign="top" align="center">

</td>

</tr>
</table>
</td>
</tr>
</table>
</td>
<td></td>
</tr>
</table>
</td>
<td> </td>
</tr>
<tr>
<td></td>
<td height="100%">

<table cellpadding="0" cellspacing="0" border="0"
width="100%" height="100%">

<tr>
<td style="height: 100%; background-image:
url(images/rep_bot.jpg); background-repeat: repeat-y;
background-position: center;"></td>

</tr>

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 197

7249ch15.qxd 11/13/06 9:21 PM Page 197

</table>
</td>
<td></td>
</tr>
</table>

</form>
</body>
</html>

Figure 15-4 shows the master page in design view.

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER198

Figure 15-4. Master page, design view

The master page is complete. You are now ready to address the remaining web pages in the presentation layer
and associate all of them to the master page you just created.

Creating the Individual Web Pages
Now that you have established the master page, you can implement the remaining web pages
that will be visible to all users.

About Us
The About Us web page will be a basic page that is actually the default page, or home page,
when the users first come to the site. This page will describe the history of the vineyard along
with all the different types of wines and accessories that are available. That being said, it will
probably be the web page with the most simplistic contents.

7249ch15.qxd 11/13/06 9:21 PM Page 198

Exercise: Adding the About Us Web Page

In this exercise, you’ll add the About Us web page, which will actually be named Default.aspx; you will use the
master page you created and implemented in the prior exercise. Please note that when creating a new web proj-
ect, Visual Studio will create a web form named Default.aspx. You have two options here. You can keep this web
form, or you can delete it and add another web form with the same name, which will be easier to associate with
the respective master page. Follow these steps:

1. Proceed to the web project, right-click, and choose the Add New Item menu item, as shown in Figure 15-5.

Figure 15-5. Adding a new item to the web project

2. You will see the Add New Item dialog box. In this dialog box, choose Web Form from the available
items, and name the web form Default.aspx. Then select the Select Master Page box, as shown in
Figure 15-6.

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 199

7249ch15.qxd 11/13/06 9:21 PM Page 199

Figure 15-6. Adding the About Us web form

3. After naming the new web form, click the Add button. You will see the Select a Master Page dialog box,
as shown in Figure 15-7.

Figure 15-7. Selecting a master page

4. Select the Main.master master page from the Contents of folder pane on the right. Finally, click the OK
button, which will add the Default.aspx web form:

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER200

7249ch15.qxd 11/13/06 9:21 PM Page 200

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" Title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">
</asp:Content>

5. Now that the infrastructure is in place, you can add the following HTML code to the Default.aspx file:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true"
CodeFile="Default.aspx.cs"
Inherits="_Default" Title="Welcome to Little Italy Vineyard" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="contentplaceholderMain"
runat="Server">

<table cellpadding="10" cellspacing="0" border="0">
<tr>
<td>
Welcome to Little Italy Vineyards

Little Italy Vineyards has been a family-owned business since
the early 1950s. It was founded and started by the
current owner’s parents who were born in Italy and owned a
vineyard there but wanted to move to America
to raise their family.

As a result, they moved to America after selling their vineyard
in Italy and eventually started a new vineyard,
Little Italy Vineyards, in California.

Many tours are available on a daily basis. Please browse
throughout our vineyard to find some of the fines
wines available.

</td>

</tr>
</table>

</asp:Content>

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 201

7249ch15.qxd 11/13/06 9:21 PM Page 201

6. Switch to design view in Visual Studio 2005 to preview how the newly added HTML code is integrated
in the master page, as shown in Figure 15-8.

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER202

Figure 15-8. Viewing the Default.aspx web form

You have successfully added the first web page to the presentation layer that will be associated with the master
page. You’ll now move along to similar exercises to implement the remaining web pages and associate them to the
master page.

Winery
The Winery web page will be the area in which the products for sale are listed. Users will have
the ability to browse through the individual products for sale and to search for specific prod-
ucts by name or by category.

Exercise: Adding the Winery Web Page

This exercise will outline how to add the Winery web form and associate it with the master page. Follow these steps:

1. Proceed to the web project, right-click, and choose the Add New Item menu item, as shown in
Figure 15-9.

7249ch15.qxd 11/13/06 9:21 PM Page 202

Figure 15-9. Adding a new item

2. You will see the Add New Item dialog box. In this dialog box, choose Web Form from the available
items, and name it Winery. Then select the Select Master Page box, as shown in Figure 15-10.

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 203

7249ch15.qxd 11/13/06 9:21 PM Page 203

Figure 15-10. Adding the Winery web form

3. After naming the new web form, click the Add button. You will see the Select a Master Page dialog box,
as shown in Figure 15-11.

Figure 15-11. Selecting a master page

4. Select the Main.master master page from the Contents of folder pane on the right. Then click the OK
button, which will add the Winery.aspx web form:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="Winery.aspx.cs"

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER204

7249ch15.qxd 11/13/06 9:21 PM Page 204

Inherits="Winery"
Title=" Little Italy Vineyard | The Vineyard " %>

<asp:Content ID="Content1"
ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">
</asp:Content>

5. Now that the infrastructure is in place, you can add the following HTML code to the Winery.aspx file:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="Winery.aspx.cs"
Inherits="Winery"
Title="Little Italy Vineyard | The Vineyard" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<img src="images/spacer.gif" width="5" height="1"

border="0" />

</asp:Content>

6. Switch to design view in Visual Studio 2005 to preview how the newly added HTML code is integrated
in the master page, as shown in Figure 15-12.

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 205

Figure 15-12. Viewing the Winery.aspx web form

The Winery.aspx web form is now prepared for you to add the product catalog in upcoming chapters.

7249ch15.qxd 11/13/06 9:21 PM Page 205

FAQ
The FAQ (or frequently asked questions) page will list common questions that a customer
might want to ask. You want to provide answers for these types of questions; therefore, you
will have a web page that lists these answers for the customers.

Exercise: Adding the FAQ Web Page

This exercise will outline how to add the FAQ web form and associate it with the respective master page. Follow
these steps:

1. Proceed to the web project, right-click, and choose the Add New Item menu item, as shown in
Figure 15-13.

Figure 15-13. Adding a new item

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER206

7249ch15.qxd 11/13/06 9:21 PM Page 206

2. You will see the Add New Item dialog box. In this dialog box, choose Web Form from the available
items, and name it FAQ. Then select the Select Master Page box, as shown in Figure 15-14.

Figure 15-14. Adding the FAQ.aspx web form

3. After naming the new web form, click the Add button, and you will see the Select a Master Page dialog
box, as shown in Figure 15-15.

Figure 15-15. Selecting a master page

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 207

7249ch15.qxd 11/13/06 9:21 PM Page 207

4. Select the Main.master master page from the Contents of folder pane on the right. Finally, click the OK
button, which will add the FAQ.aspx web form:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true"
CodeFile="FAQ.aspx.cs"
Inherits="FAQ" Title="Untitled Page" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">
</asp:Content>

5. Now that the infrastructure is in place, you can add the following HTML code to the FAQ.aspx web form
that will display some frequently asked questions and the answers:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true"
CodeFile="FAQ.aspx.cs"
Inherits="FAQ" Title="Little Italy Vineyard | FAQ" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<table border="0" cellpadding="10" cellspacing="0" width="100%">
<tr>
<td>

<table border="0" cellpadding="0"
cellspacing="0" width="100%">

<tr>
<td>

What are the locations that you ship your products?

</td>

</tr>
<tr><td><img src="images/spacer.gif" width="1" height="2"
border="0" />
</td></tr>

<tr>
<td>

Little Italy Vineyards ships to anywhere within the USA.
</td>

</tr>
<tr><td>

<img src="images/spacer.gif" width="1" height="15"
border="0" />
</td>

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER208

7249ch15.qxd 11/13/06 9:21 PM Page 208

</tr>
<tr>

<td align="center" >
<table cellpadding="0" cellspacing="0" border="0"
width="50%">
<tr>
<td width="100%" class="separatorBG">
<img src="images/spacer.gif"
width="1" height="1"
border="0" />
</td>
<td>
</td>
</tr>

</table>
</td>
</tr>

<tr><td><img src="images/spacer.gif" width="1" height="15"
border="0" />
</td></tr>
<tr>

<td>

How old do I have to be to purchase wine from your vineyard?

</td>

</tr>
<tr><td><img src="images/spacer.gif" width="1" height="2"
border="0" />
</td></tr>
<tr>
<td>
You must be at least 21 years of age to make a purchase.
</td>

</tr>
<tr><td><img src="images/spacer.gif" width="1" height="15"
border="0" />
</td></tr>
<tr>
<td align="center" >
<table cellpadding="0" cellspacing="0" border="0"
width="50%">

<tr>
<td width="100%" class="separatorBG">
<img src="images/spacer.gif"
width="1" height="1" border="0" />
</td>
<td>

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 209

7249ch15.qxd 11/13/06 9:21 PM Page 209

</td>
</tr>

</table>
</td>
</tr>

<tr><td>
<img src="images/spacer.gif" width="1"
height="15" border="0" />
</td></tr>
<tr>

<td>

What types of wine does your vineyard offer?
</td>

</tr>
<tr>
<td>

We offer many different types of wine.
Please browse throughout our winery
online.</td>
</tr>
<tr><td><img src="images/spacer.gif" width="1"
height="15" border="0" />
</td></tr>

<tr>
<td align="center" >

<table cellpadding="0" cellspacing="0" border="0"
width="50%">

<tr>
<td width="100%" class="separatorBG">
<img src="images/spacer.gif" width="1"
height="1" border="0" />
</td>
<td>

</td>
</tr>
</table>
</td>
</tr>

<tr><td><img src="images/spacer.gif" width="1"
height="15"
border="0" />
</td></tr>

<tr>
<td>

Do you offer any monthly clubs or wines of the month?

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER210

7249ch15.qxd 11/13/06 9:21 PM Page 210

</td>
</tr>

<tr><td><img src="images/spacer.gif" width="1" height="2"
border="0" />

</td></tr>
<tr>
<td>

Yes, we offer a Wine of the Month Club.
Please refer to our product catalog.</td>

</tr>
<tr><td><img src="images/spacer.gif" width="1" height="15"
border="0" />
</td></tr>
</table>
</td>
</tr>

</table>
</asp:Content>

6. Switch to design view in Visual Studio 2005 to preview how the newly added HTML code is integrated
into the master page, as shown in Figure 15-16.

Figure 15-16. The FAQ.aspx in design view

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 211

You now have a complete web page that lists some of the frequently asked questions asked by the customers and
the answers to those questions.

7249ch15.qxd 11/13/06 9:21 PM Page 211

Contact Us
The Contact Us web page will have all the necessary contact information regarding the vine-
yard and company. It will list the address and phone numbers along with an e-mail contact
form that will allow a user to submit questions or feedback to the vineyard.

Exercise: Adding the Contact Us Web Page

This exercise will outline how to add the Contact Us web form and associate it with the master page. Follow
these steps:

1. Proceed to the web project, right-click, and choose the Add New Item menu item, as shown in
Figure 15-17.

Figure 15-17. Adding a new item

2. You will see the Add New Item dialog box. In this dialog box, choose Web Form from the available
items, and name it ContactUs. Then select the Select Master Page box, as shown in Figure 15-18.

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER212

7249ch15.qxd 11/13/06 9:21 PM Page 212

Figure 15-18. Adding the ContactUs.aspx web form

3. After naming the new web form, click the Add button, and you will see the Select a Master Page dialog
box, as shown in Figure 15-19.

Figure 15-19. Selecting a master page

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 213

7249ch15.qxd 11/13/06 9:21 PM Page 213

4. Select the Main.master master page from the Contents of Folder pane on the right. Finally, click the OK
button, which will add the ContactUs.aspx web form:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true"
CodeFile="ContactUs.aspx.cs"
Inherits="ContactUs"
Title="Untitled Page" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">
</asp:Content>

5. Now that the infrastructure is in place, you can add the following HTML code to the ContactUs.aspx file:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true"
CodeFile="ContactUs.aspx.cs"
Inherits="ContactUs"
Title="Little Italy Vineyard | Contact Us" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="contentplaceholderMain"
runat="Server">

<table width="100%" height="100%" border="0" cellpadding="0"
cellspacing="0"
background="images/rep_3.jpg">

<tr align="left" valign="top">
<td height="100%">

<table width="450" border="0" cellpadding="0"
cellspacing="0"
background="images/back_4.jpg"

style="background-position: top right; background-repeat:
no-repeat">

<tr>
<td align="left" valign="top" style="background-repeat:
no-repeat;
background-position:
top left;
height: 103px;">
<div style="padding-left: 16px;">
<img src="images/tradit_3.jpg" width="73"
height="11"></div>
<div style="padding-left: 15px; padding-top: 12px;
padding-right: 45px;
padding-bottom: 24px;
line-height: 12px">
<img src="images/pic_4.jpg" width="114"

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER214

7249ch15.qxd 11/13/06 9:21 PM Page 214

height="78" align="left"
style="margin-right: 19px">
<table
width="260" border="0" cellspacing="0"
cellpadding="0">
<tr align="left" valign="top"
style="line-height: 12px">
<td class="light" style="width: 221px">
<div style="padding-left: 0px;
padding-top: 3px">
Little Italy Vineyards, Inc.

9863 Merlot Dr.

Sonoma Valley, CA 90211</div>
<div style="padding-left: 0px;
padding-top: 10px">
<table cellpadding="0"
cellspacing="0" border="0">
<tr>
<td class="light">Tel:
</td>
<td><img src="images/spacer.gif"
width="10" height="1" /></td>
<td class="light">
555-555-5555</td>
</tr>
<tr>
<td class="light">Fax:
</td>
<td><img src="images/spacer.gif"
width="10" height="1" /></td>
<td class="light">
555-555-5522</td>
</tr>
</table>
</div>
</td>
<td class="light">
<div style="padding-left: 0px;
padding-top: 3px">
 </div>
</td>
</tr>

</table>
</div>
</td>
</tr>

<tr>

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 215

7249ch15.qxd 11/13/06 9:21 PM Page 215

<td height="100%" align="left" valign="top"
background="images/rep_line.jpg"
bgcolor="#F3E9BF"
style="background-repeat: repeat-y;
background-position: top left">
<table width="100%" height="100%"
border="0" cellpadding="0"
cellspacing="0"
background="images/rep_5.jpg"
style="background-repeat: repeat-x;
background-position: top">
<tr><td>
<img src="images/spacer.gif" width="1"
height="15" /></td></tr>
<tr align="left" valign="top">

<td height="100%">
<div align="Center">

<table width="375" border="0"
cellspacing="0"
cellpadding="0">

<tr>
<td height="28" align="left"

valign="top" style="width: 191px">
Name:
<asp:RequiredFieldValidator ID="requiredName"
runat="server" ControlToValidate="textName"
Display="Dynamic" EnableClientScript="False"
ErrorMessage="
Please enter your name.">
</asp:RequiredFieldValidator>

<asp:TextBox ID="textName" runat="server"
CssClass="textField"></asp:TextBox>
<td height="28" align="right" valign="top"
style="text-align: left">
Email:
<asp:RequiredFieldValidator ID="requiredEmail"
runat="server" ControlToValidate="textEmail"
Display="Dynamic" EnableClientScript="False"
ErrorMessage="
Please enter your email.">
</asp:RequiredFieldValidator>
<asp:RegularExpressionValidator ID="regularexpEmail"
runat="server" ControlToValidate="textEmail"

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER216

7249ch15.qxd 11/13/06 9:21 PM Page 216

Display="Dynamic" EnableClientScript="False"
ErrorMessage="
Please enter a valid email."
ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">
</asp:RegularExpressionValidator>

<asp:TextBox ID="textEmail" runat="server"
CssClass="textField"></asp:TextBox>

</tr>
<tr><td>

</td></tr>
<tr>

<td colspan="2" align="left" valign="top">
Comments:

<asp:TextBox ID="textComment" TextMode="MultiLine"
runat="server" CssClass="textField" Height="75px">
</asp:TextBox></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"
height="5" /></td></tr>
<tr align="right">
<td colspan="2" valign="bottom" style="height: 17px">
<asp:Button ID="commandReset" runat="server"
Text="Reset" CausesValidation="False"
OnClick="commandReset_Click" CssClass="button" />
<asp:Button ID="commandSubmit" runat="server"
OnClick="commandSubmit_Click"
Text="Submit" CssClass="button" /> </td>

</tr>
</table>
</div>
</td>
</tr>

<tr><td><img src="images/spacer.gif" width="1"
height="15" /></td></tr>
</table>
</td>

</tr>
</table>
</td>
</tr>

</table>
</asp:Content>

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 217

7249ch15.qxd 11/13/06 9:21 PM Page 217

6. Switch to design view in Visual Studio 2005 to preview how the newly added HTML code is integrated
into the master page, as shown in Figure 15-20.

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER218

Figure 15-20. Viewing the ContactUs.aspx web form

7. The presentation section of the ContactUs.aspx page is in place, so you now need to implement the
code that will take the input that the customer enters and submit it in an e-mail message to the
vineyard. To do this, proceed to the C# code section of the ContactUs.aspx web form, and implement
a reference to the operational project as well as the page load event, as demonstrated here:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Operational;

public partial class ContactUs : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

7249ch15.qxd 11/13/06 9:21 PM Page 218

if (!IsPostBack)
{

textName.Focus();
}

}

private void SendMessage()
{
if (IsValid)
{

EmailContents contents = new EmailContents();
contents.FromName = textName.Text;
contents.FromEmailAddress = textEmail.Text;
contents.Body = textComment.Text;
contents.Subject = "Website Feedback";

EmailManager emailmngr = new EmailManager();
emailmngr.Send(contents);

if (emailmngr.IsSent)
{

Response.Redirect("ContactUsConfirm.asp");
}

}
}

protected void commandSubmit_Click(object sender , EventArgs e)
{

SendMessage();
}

protected void commandReset_Click(object sender , EventArgs e)
{

textName.Text = "";
textEmail.Text = "";
textComment.Text = "";
textName.Focus();

}
}

How It Works

The previous code implements first the EmailContents struct and then the EmailManager class. The
EmailContents struct populates the necessary information from the user’s input that will subsequently be
passed along in the Send method of the EmailManager class. If the message has been sent successfully,
the IsSent property will be true, and then you can then redirect the user to the ContactUsConfirm.aspx
web form, which you will implement in the next exercise step.

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER 219

7249ch15.qxd 11/13/06 9:21 PM Page 219

8. The final step in this exercise is to implement the web form that will confirm to the customer that the
feedback message was sent successfully. To do so, you will add another web form named ContactUsCon-
firm.aspx and associate it with the respective master page. This web form will be essentially the same as
the ContactUs.aspx web form except that where the text boxes were, you will simply add a message to
inform the user that the message was sent and someone will be contacting them as soon as possible.

This brings you to the end of yet another exercise; you have implemented the ability for a user to submit feedback
to the site by way of an e-mail submission form. By having this type of contact form, you can stay in touch with
customers, and even with potential customers, by answering their questions.

Default Error Page
I’ll now address the error web form you specified in the previous chapter when you implemented
the exception handling for the application. Add a new web form to the web project named
ErrorPage.aspx, which you declared in the prior chapter as the default error page. When adding
this page, associate it with the master page. Regarding this error page, you will want to inform the
user that an error has occurred. Figure 15-21 shows the message that is displayed to the user.

Figure 15-21. Viewing the ErrorPage.aspx web form

Summary
You have arrived at the end of the chapter dedicated to the presentation layer of the architec-
ture, taking you to the end of the in-depth discussions regarding the application’s architecture.
Now that a solid architecture is in place, you can move forward with building upon the archi-
tecture and implement the various functionality that was decided upon earlier in the book
from gathering the requirements.

CHAPTER 15 ■ CREATING THE PRESENTATION LAYER220

7249ch15.qxd 11/13/06 9:21 PM Page 220

Core Development

Welcome hardcore developers and programmers—you have finally arrived at the part of

the book where you will program the main functionality of the e-commerce application for

the case study. The following chapters will contain extensive exercises that show how to

implement the product catalog, the searching functionality, the shopping cart, the credit

card–processing functionality, and the customer accounts. After these chapters, your

e-commerce application will just about be ready for the production environment.

P A R T 5

■ ■ ■

7249ch16.qxd 11/13/06 9:21 PM Page 221

7249ch16.qxd 11/13/06 9:21 PM Page 222

Developing the Product Catalog

You have arrived at last where you can roll up your sleeves and focus on some heavy-duty
programming in C#. I don’t mean to downplay all the earlier setup work you have implemented,
but many individuals in this industry truly love coding applications. I consider myself one of
these individuals, but at the same time, I have gained an affinity for all aspects of building
e-commerce applications.

This chapter is the lengthiest so far, and it contains a fair amount of code that you need to
write. I will cover the following aspects, which will result in a fully functional product catalog:

• Implementing the product catalog

• Displaying the product images

• Viewing the product details

• Searching the product catalog

Creating the Product Catalog
The product catalog in many ways is the most important piece of the overall system since ulti-
mately the amount of sales over a period of time will dictate the success of the business and of
the e-commerce application. Therefore, you need to have a clear, concise, and easy-to-navigate
product catalog. So, let’s get to work!

223

C H A P T E R 1 6

■ ■ ■

7249ch16.qxd 11/13/06 9:21 PM Page 223

Creating the Stored Procedure
The first order of business for implementing the product catalog is to create a stored proce-
dure that will return the products stored in the database. Customers will be able to view these
products in order to get more information about them. Before creating the stored procedure,
you’ll review the database tables from which you’ll create the stored procedure.

Figure 16-1 shows the Products table, which contains the fields for the basic attributes of
the individual products. Figure 16-2 shows the ProductCategory table, which contains the cat-
egory names and IDs. Figure 16-3 shows the ProductImages table, which contains the product
image IDs along with the binary data of the images.

Figure 16-1. The Products table

Figure 16-2. The ProductCategory table

Figure 16-3. The ProductImages table

Each of these tables has specific relationships. Figure 16-4 shows the macro view of the
three tables and their relationships.

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG224

7249ch16.qxd 11/13/06 9:21 PM Page 224

Figure 16-4. The tables and relationships

These relationships ensure that every product in the Products table has an associated
product category and product image with a defined set of values. For instance, each wine for
sale will fit into a certain category, such as Red Wine, White Wine, or Appetizer Wine. All these
different categories will appear in the ProductCategory table, which is then referenced from
the Products table by a unique ID number. Each product will also have an associated image
that is stored in the ProductImages table as a binary value with a unique ID number. The ID
number will also be referenced from the Products table.

Now that you are familiar with the tables you’ll use for the stored procedure, the following
exercise shows how to create the Products_Select stored procedure.

Exercise: Creating the Products_Select Stored Procedure

This exercise shows you how to create the stored procedure that you will name Products_Select. This stored
procedure will query the database for all the products that are for sale. The exercises in this chapter show
how to use Microsoft SQL Server Management Studio; however, you can use an alternative tool, and the
actual scripts will work equally as well. Follow these steps:

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 225

7249ch16.qxd 11/13/06 9:21 PM Page 225

1. Launch SQL Server Management Studio.

2. Next, log in to your development database in which you created the tables. Navigate to the LittleItalyVineyard
database in Object Explorer, uncollapse the objects, and proceed to Programmability, as shown in
Figure 16-5.

Figure 16-5. The LittleItayVineyard database

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG226

7249ch16.qxd 11/13/06 9:21 PM Page 226

3. Right-click the Stored Procedures object, and choose New Stored Procedure, as shown in Figure 16-6.

Figure 16-6. Adding a stored procedure

4. You will see the default script template. For these purposes, you can delete the default script template
so there is no entry in the query window. The next step is to create the basic script for creating a new
stored procedure, as shown here:

CREATE PROCEDURE Products_Select

AS

5. You now need to add the SQL to query the individual tables for the products. To accomplish this, you
need to join the ProductCategory table to the Products table so only one result set is returned from the
query that displays the matching product category name. Add the following body to the stored procedure:

SELECT
ProductID,
ProductName,
ProductCategoryName,
ProductImageID,
SUBSTRING(Description, 1, 150) + '...' AS Description,
Price
FROM Products
INNER JOIN ProductCategory ON
ProductCategory.ProductCategoryID = Products.ProductCategoryID

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 227

7249ch16.qxd 11/13/06 9:21 PM Page 227

Notice for the Description field that the SUBSTRING function is querying only the first 150 characters of
the full text of the description. Since you will have a details page for each product and the description
for the individual products can be quite lengthy, when displaying all the products, the description will
be brief—brief enough to give the customer a bit of a teaser to entice them to explore the details in
depth and (you hope) purchase the product.

6. Now that you have the complete script for the stored procedure, it is time to create it by executing the
script against the database. To do so, with the script in the query window, click the Execute button
located on the toolbar in SQL Server Management Studio, as shown in Figure 16-7.

Figure 16-7. The Execute command

7. Upon successful execution of the script against the database, you will see the confirmation message
“Command(s) completed successfully,” as shown in Figure 16-8.

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG228

Figure 16-8. Successfully executing the stored procedure script

Now that you have created the stored procedure for querying the result set for all the products in the database,
you need to add the code that will execute this functionality and finally display the results for the user in the pres-
entation layer.

7249ch16.qxd 11/13/06 9:21 PM Page 228

Writing the Code and Classes
You have just completed the database portion of querying the products from the database by
creating the stored procedure. Now you need to implement the code in the architecture to ful-
fill the requests of showing the products on the web form after it progresses through the
architecture to actually query the database and return the result set. Accomplishing this will
take your journey through a few different exercises, starting at the data access layer followed
by the associated business logic tier and finally the presentation layer.

Exercise: Implementing the Code for the Data Access Layer

This exercise shows how to implement the code in the data access layer class library project to incorporate all the
necessary functionality to query the database for the products using the newly stored procedure. Follow these steps:

1. Return to the Visual Studio 2005 solution, go to the Class Libraries solution folder, and then go to the
LittleItalyVineyard.DataAccess class library project. From the class library project, open the StoredProcedure
class. You’ll see an enumeration created in a previous chapter containing all the names of the stored
procedures in the system. Add the name of your new stored procedure, Products_Select, as shown in
the following code:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess
{

public class StoredProcedure
{

public enum Name
{

ProductByID_Select ,
Products_Select

}
}

}

2. You now have the name of the stored procedure that will be used. Next, add the actual data access
class that will use the enumeration to query the database for the products and return the results. To do
so, while still in the LittleItalyVineyard.DataAccess class library, proceed to the Select folder, right-click,
and choose Add ➤ Class, as shown in Figure 16-9.

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 229

7249ch16.qxd 11/13/06 9:21 PM Page 229

Figure 16-9. Adding a new class

3. Now you will see the Add New Item dialog box. In this dialog box, add the name of the new class,
ProductSelectData, as shown in Figure 16-10.

Figure 16-10. Naming the new class

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG230

7249ch16.qxd 11/13/06 9:21 PM Page 230

4. When finished entering the new name of the class, click the Add button, and you will see your new
class. The following template, or shell code, will be in the newly added class:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess.Select
{

class ProductSelectData
{
}

}

5. You need to alter the template code from the class, so add the System.Data namespace, as shown here:

using System.Data;

6. After adding the new namespaces, specify the name of the stored procedure that you will use in the
constructor of the ProductSelectData class you just created. The following is the code sample:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductSelectData : DataAccessBase
{

public ProductSelectData()
{
StoredProcedureName = StoredProcedure.Name.Products_Select.➥

ToString();
}

}
}

7. The final step to complete the ProductSelectData class is to add the Get function that will return the
DataSet from which the stored procedure will query the result set for you. Add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductSelectData : DataAccessBase

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 231

7249ch16.qxd 11/13/06 9:21 PM Page 231

{
public ProductSelectData()
{
StoredProcedureName = StoredProcedure.Name.Products_Select.➥

ToString();
}

public DataSet Get()
{

DataSet ds;

DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
ds = dbhelper.Run(ConnectionString);

return ds;
}

}
}

With the use of the DataBaseHelper class, you will use the overloaded Run function to return a DataSet with the
results from the stored procedure that it queries.

The integration of the code to query the product catalog and display it to the users is
almost complete. You have created the stored procedure and added the necessary code in the
data access layer, so now you need to add the necessary code in the business logic layer that
will utilize the class just created in the data access layer. To accomplish this, the next exercise
shows how to add the class and code for the business logic layer.

Exercise: Implementing the Code for the Business Logic Layer

This exercise shows how to add the code to the business logic layer that will ultimately be called from the presen-
tation layer and then connect to the data access layer to query the product catalog. Follow these steps:

1. Proceed to the Visual Studio 2005 solution and then to the LittleItalyVineyard.BusinessLogic class
library project. Earlier you created a class named ProcessGetProducts. Open this class; you’ll see the
following code:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetProducts : IBusinessLogic
{

public void Invoke()

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG232

7249ch16.qxd 11/13/06 9:21 PM Page 232

{

}
}

}

As you can see, the ProcessGetProducts class implements the IBusinessLogic interface, which ensures
that you implement or add the Invoke function that returns a boolean value.

2. The Invoke function is where you need to focus your attention for this exercise. However, first you need
to add the data access namespace along with the data namespace:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.DataAccess.Select;

3. Add a property that will return a DataSet that will be queried from within the Invoke method. This prop-
erty will ultimately be the property that the data control will be data bound to in the presentation layer:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetProducts : IBusinessLogic
{

private DataSet _resultset;

public ProcessGetProducts()
{

}

public void Invoke()
{

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 233

7249ch16.qxd 11/13/06 9:21 PM Page 233

}
}

}

4. Now, you can focus your attention on the Invoke function that will yield the population of the ResultSet
property. To do so, instantiate the ProductSelectData class from the data access classes and then call
the Get function, setting the return value to that of the ResultSet property, as shown in the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetProducts : IBusinessLogic
{

private DataSet _resultset;

public ProcessGetProducts()
{

}

public void Invoke()
{

ProductSelectData productdata = new ProductSelectData();
ResultSet = productdata.Get();

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

The code is now complete for the business logic layer in the classes to be the conduit for the results of the prod-
ucts stored in the database. The final step is to add the code for the section that will actually display the products
with Hypertext Markup Language (HTML).

The final section of the implementation is the presentation layer of the architecture.

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG234

7249ch16.qxd 11/13/06 9:21 PM Page 234

Exercise: Implementing the Code for the Presentation Layer

This exercise shows how to implement the proper code in the web page that will initiate calling the business logic
and ultimately the data access layers of the application to query the product catalog from the database. Follow
these steps:

1. Return to the Visual Studio 2005 solution and to the web project. In Chapter 15, you added a web page
named Winery.aspx. Open that page in design view in Visual Studio, and place a DataView control so
that the HTML of the page resembles the following:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="Winery.aspx.cs"
Inherits="Winery" Title="Little Italy Vineyard | The Vineyard" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<asp:DataList id="DataList1" runat="server">
</asp:DataList>

</asp:Content>

2. You can see that the DataList HTML code is in the ContentPlaceHolder control of the master page. To
proceed, you need to modify the DataList control starting with the ID. You also need to specify how the
columns of the data will be displayed. The runat tag will specify this control as a server control, and the
RepeatColumns property will enforce that only a single column of data will be displayed vertically. The
HTML should now resemble the following.

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="Winery.aspx.cs"
Inherits="Winery" Title="Little Italy Vineyard | The Vineyard" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<asp:DataList id="datalistProducts" RepeatColumns="1" runat="server">
</asp:DataList>

</asp:Content>

3. As the code is now, the DataList control has the bare minimum of what you need to data bind it to the
DataSet that the query from the database will return. Therefore, turn your attention to the code to data
bind the DataList control, thus utilizing the classes you created in the previous exercises. To do so,
switch to the C# view in Visual Studio of the Winery.aspx web page. In the Page Load method, add the
following code to prevent data binding when there is a postback to the server, as shown here:

using System;
using System.Data;
using System.Configuration;

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 235

7249ch16.qxd 11/13/06 9:21 PM Page 235

using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Winery : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

if (! IsPostBack)
{

}
}

}

4. Now add a method that will bind the products to the DataList control. The code will look like the following:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Winery : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

if (! IsPostBack)
{

LoadProducts();
}

}

private void LoadProducts()
{

}
}

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG236

7249ch16.qxd 11/13/06 9:21 PM Page 236

5. Now you need to add a reference to the LittleItalyVineyard.BusinessLogic project by right-clicking the
web project and choosing to add a reference, as shown in Figure 16-11.

Figure 16-11. Adding the reference

6. Select the LittleItalyVineyard.BusinessLogic reference on the Projects tab, and click the OK button. You
are now able to add the business logic namespace, as shown here:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.BusinessLogic;

7. Everything is now set up to add the code that will connect to the business logic layer and ultimately
show the products in the DataList control. To proceed, you will instantiate the business logic class,
ProcessGetProducts, followed by the Invoke method. Then you will data bind the DataList to the
DataSet, as shown in the following code:

private void LoadProducts()
{

ProcessGetProducts processproducts = new ProcessGetProducts();

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 237

7249ch16.qxd 11/13/06 9:21 PM Page 237

try
{

processproducts.Invoke();
}
catch
{
Response.Redirect("ErrorPage.aspx");

}

datalistProducts.DataSource = processproducts.ResultSet;
datalistProducts.DataBind();

}

8. The code is now complete to handle the request of querying the products from the database and data
binding the results to the DataList. However, you need to return to the HTML of the DataList and add
some formatting and the individual fields that will be bound to the data. Return to the source view of the
Winery.aspx page. From within the DataList tags, you need to add the ItemTemplate tag, as shown here:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="Winery.aspx.cs"
Inherits="Winery" Title="Little Italy Vineyard | The Vineyard %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">
<asp:DataList id="datalistProducts" RepeatColumns="1" runat="server">
<ItemTemplate>
</ItemTemplate>
</asp:DataList>
</asp:Content>

9. In the ItemTemplate tags, add an HTML table and rows that will create the structure to display the
complete product catalog:

<%@ Page Language="C#"
MasterPageFile="~/Main.master" AutoEventWireup="true"
CodeFile="Winery.aspx.cs" Inherits="Winery"
Title="Little Italy Vineyard | The Vineyard" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">
<asp:DataList ID="datalistProducts" RepeatColumns="1" runat="server"
Width="100%">

<ItemTemplate>
<table border="0" cellpadding="1" cellspacing="0" width="100%">

<tr>
<td><img src="images/spacer.gif" width="50" height="1"
border="0" /></td>
<td valign="top" align="right">

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG238

7249ch16.qxd 11/13/06 9:21 PM Page 238

</td>
<td width="100%" valign="top">

<table cellpadding="0" cellspacing="0" border="0"
width="100%">
<tr>

<td width="17"><img src="images/spacer.gif"
width="17" height="3" border="0" /></td>
<td></td>

</tr>
<tr>

<td></td>
</tr>
<tr><td><img src="images/spacer.gif" width="1"
height="5" border="0" /></td></tr>
<tr>

<td colspan="2">
<table cellpadding="0" cellspacing="0"
border="0" width="75%">
<tr><td class="prodUnderlineBG"

width="100%"></td></tr>
<tr><td><img src="images/spacer.gif"
width="1" height="1" border="0" />

</td></tr>
<tr><td>

</td></tr>

</table>
</td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="5" border="0" /></td></tr>
<tr><td><img src="images/spacer.gif" width="1"

height="5" border="0" /></td></tr>
</table>

</td>
<td><img src="images/spacer.gif" width="15" height="1"

border="0" /></td>
</tr>

</table>
</ItemTemplate>

</asp:DataList>
</asp:Content>

10. In the HTML tables and rows, you will data bind the individual values that will ultimately display each of
the products in the catalog. The Eval method will be used for data binding, as shown in the following
HTML code. The Eval data-binding method will specify the name of the database column that the
stored procedure is querying:

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 239

7249ch16.qxd 11/13/06 9:21 PM Page 239

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="Winery.aspx.cs"

Inherits="Winery" Title="Little Italy Vineyard | The Vineyard" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
runat="Server">

<table cellpadding="0" cellspacing="0" border="0" width="100%">

<tr><td><img src="images/spacer.gif" width="1" height="5"
border="0" /></td></tr>

<tr>
<td><img src="images/spacer.gif" width="35" height="1"
border="0" /></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1" height="5"

border="0" /></td></tr>
<tr>

<td align="center" colspan="2">
<table cellpadding="0" cellspacing="0"

border="0" width="95%">
<tr>

<td width="100%" class="separatorBG">
<img src="images/spacer.gif" width="1" height="1"

border="0" /></td>
<td>

</td>
</tr>

</table>
</td>
<td></td>

</tr>
</table>

<asp:DataList ID="datalistProducts" RepeatColumns="1" runat="server"

Width="100%">
<ItemTemplate>

<table border="0" cellpadding="1" cellspacing="0" width="100%">
<tr>

<td><img src="images/spacer.gif" width="50" height="1"
border="0" /></td>

<td valign="top" align="right">
<a href='ProductDetails.aspx?ProductID=<%# Eval("ProductID") %>'>
<img src='ImageViewer.ashx?ImageID=<%# Eval("ProductImageID") %>'

height="85" border="0"
class="prodBorder">

</td>

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG240

7249ch16.qxd 11/13/06 9:21 PM Page 240

<td width="100%" valign="top">
<table cellpadding="0" cellspacing="0" border="0"
width="100%">
<tr>

<td width="17"><img src="images/spacer.gif"
width="17" height="3" border="0" /></td>
<td></td>

</tr>
<tr>

<td></td>
<td class="ProductListHead">

<a href='ProductDetails.aspx?ProductID=➥

<%# Eval("ProductID") %>'>
<%# Eval("ProductName") %></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="5" border="0" /></td></tr>
<tr>

<td colspan="2">
<table cellpadding="0" cellspacing="0"

border="0" width="75%">
<tr><td class="prodUnderlineBG" width="100%">
</td></tr>

<tr><td>
<img src="images/spacer.gif" width="1"

height="1"
border="0" />
</td></tr>

<tr><td></td></tr>
</table>

</td>
</tr>
<tr>

<td></td>
<td><%# Eval("Description") %></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="5" border="0" /></td></tr>
<tr>

<td></td>
<td>

Price:

<%# Eval("Price", "{0:c}") %>

</td>
</tr>

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 241

7249ch16.qxd 11/13/06 9:21 PM Page 241

<tr><td><img src="images/spacer.gif" width="1"
height="5" border="0" /></td></tr>
<tr>

<td></td>
<td>

<a href='AddToCart.aspx?ProductID=<%# Eval("ProductID") %>'>

Add To Cart

</td>
</tr>

</table>
</td>
<td><img src="images/spacer.gif" width="15" height="1"

border="0" /></td>
</tr>

</table>
</ItemTemplate>

</asp:DataList>

</asp:Content>

It is apparent that you added a good deal of HTML code to the web form. You also added some addi-
tional items worthy of explanation. In addition to the data binding, you added links to the details page
of the product, to the product image, and to the web form that will add the product to the shopping
cart. These web pages have not been added as of yet, but you have the links implemented and will add
these web pages later in this exercise.

11. The next order of business is to add the web pages for which you have implemented the links. You’ll
start by implementing how the images will be displayed for each of the products in the catalog. Each of
the product images is stored in the database as binary data. As a result, you need to query the database
for the binary image data by specifying the product image ID. To accomplish this feat, you will use an
ASHX file, more commonly known as an HTTP handler. The reason you will use this type of file opposed
to a standard web form is that all that is required is returning a stream of bytes that will represent an
image. In a standard ASPX or web form, ASPX pages need to inherit the System.Web.UI.Page, which
will add overhead that is not needed. So, right-click the web project, and choose to add a new item to
the project. When prompted with the Add New Item dialog box, choose the GenericHandler item, and
name the new file ImageViewer, as shown in Figure 16-12.

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG242

7249ch16.qxd 11/13/06 9:21 PM Page 242

Figure 16-12. Adding the generic handler, the ASHX file

12. Upon adding the generic handler to the web project, you will see the following code:

<%@ WebHandler Language="C#" Class="ImageViewer" %>

using System;
using System.Web;

public class ImageViewer : IHttpHandler
{

public void ProcessRequest (HttpContext context) {
context.Response.ContentType = "text/plain";
context.Response.Write("Hello World");

}

public bool IsReusable {
get {

return false;
}

}

}

As with adding class files to your source code base, you can see some shell code in the generic handler
file. You now have the page that will handle displaying the images for the products.

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 243

7249ch16.qxd 11/13/06 9:21 PM Page 243

13. One of the other web pages you need to add is the web form that will allow you to show the details of
the individual products. Appropriately named, the web form is called ProductDetails.aspx and will show
the full description of the product along with the image and price. Right-click the web project, add
a new web form, and finally name it ProductDetails.aspx. Select the Main.master master page as
well. (Similar to implementing the generic handler, you will fully implement the ProductDetails.aspx
web form later in the chapter.)

14. The final web form to add in this exercise is the AddToCart.aspx web form. Just as with the other web
forms, you will implement the full details of the AddToCart.aspx web form later in the chapter. Right-
click the web project, add a new web form, name it AddToCart, and select the Main.master master
page.

Well, this has been quite the lengthy exercise to add the product catalog to your application. You still have some
work to finish with displaying the images, the product details, and the page to handle requests to add the products
to the shopping cart.

Displaying the Product Images
As mentioned in the previous exercise, the images for the products in the database are stored
as binary data. Since the data for the images is in a binary format, you cannot simply set a path
to the images in a directory on the file system. You need to have the binary data processed and
ultimately displayed as an image on the web page. I touched upon this concept in the previous
exercise when you added the ASHX file, better known as an HTTP handler or generic handler.
ASHX files implement the IHttpHandler interface and have one main benefit over using a stan-
dard web form or ASPX page. Basically, ASHX files have the ability to access the HttpContext
while at the same time do not have to inherit from the Page class; thus, they don’t require the
additional overhead of displaying the images for the product category. More specifically, all
the related HTTP information is readily available regarding the request that is received in the
page.

ASHX files have two methods, as you saw when you added the ASHX code to the project.
These methods are ProcessRequest and IsReusable. Lastly, another great benefit to using these
files to display your images is that you will not be required to register the file extension in
Internet Information Services (IIS) or in your project’s Web.config file. You can simply add
them to your project, and everything is good to go. The following exercise will show you the
specifics.

Exercise: Displaying the Images

This exercise shows how to implement the product images in the HTTP handler and ASHX page you added to
the web project in the previous exercise. Follow these steps:

1. Proceed to the generic handler, the ImageViewer.ashx file, that you added in the previous exercise. You
need to modify the template code that was added. As mentioned, you need to keep the two methods;
however, you will delete the code from within the ProcessRequest method, and you can keep the
IsReusable method as is:

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG244

7249ch16.qxd 11/13/06 9:21 PM Page 244

<%@ WebHandler Language="C#" Class="ImageViewer" %>

using System;
using System.Web;

public class ImageViewer : IHttpHandler
{

public void ProcessRequest (HttpContext context)
{

}

public bool IsReusable
{

get { return false; }
}

}

2. For this exercise, you will focus on the ProcessRequest method to eventually display the individual
image. The first step in this method is to retrieve the query string for the image ID from the HttpContext
being passed into the method, as shown in the following code:

<%@ WebHandler Language="C#" Class="ImageViewer" %>

using System;
using System.Web;

using LittleItalyVineyard.Common;

public class ImageViewer : IHttpHandler
{

public void ProcessRequest (HttpContext context)
{

Product product = new Product();
product.ImageID = int.Parse➥

(context.Request.QueryString["ImageID"]);
}

public bool IsReusable
{

get { return false; }
}

}

3. You now have an instantiated Product class that will set the ImageID property in the code that will hold
the ID for the image you need to query from the database. The next step is to implement functionality
to retrieve the binary data from the database according to the image ID. You accomplish this by imple-
menting the necessary code in the architecture to eventually retrieve the binary data of the image.
Therefore, let’s first add the namespace for the business logic layer to the code:

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 245

7249ch16.qxd 11/13/06 9:21 PM Page 245

<%@ WebHandler Language="C#" Class="ImageViewer" %>

using System;
using System.Web;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;

public class ImageViewer : IHttpHandler
{

public void ProcessRequest (HttpContext context)
{

Product product = new Product();
product.ImageID = int.Parse➥

(context.Request.QueryString["ImageID"]);
}

public bool IsReusable
{

get { return false; }
}

}

4. Now, even though you are in the presentation layer, you need to revert to the database and create the
stored procedure that will query the database for the image. To do so, proceed to SQL Server Manage-
ment Studio and to the LittleItalyVineyard database. From there, open the query editor, and create and
execute the following stored procedure script:

CREATE PROCEDURE ProductImage_Select

@ProductImageID int

AS

SELECT ProductImage FROM ProductImages
WHERE ProductImageID = @ProductImageID

5. You now have the stored procedure created to retrieve the image data. The next step is to add the class for
the data access layer to use the new stored procedure. Proceed to the LittleItalyVineyard.DataAccess
class library project and to the Select solution folder. Finally, add a new class named
ProductImageSelectByIDDate, and add the code, as shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG246

7249ch16.qxd 11/13/06 9:21 PM Page 246

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductImageSelectByIDData : DataAccessBase
{

private Product _product;

public ProductImageSelectByIDData()
{

StoredProcedureName = StoredProcedure.Name.➥

ProductImage_Select.ToString();
}

public object Get()
{

object imagedata;

ProductImageSelectByIDDataParameters➥

_productimgselectbyiddataparameters =➥

new ProductImageSelectByIDDataParameters(Product);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
imagedata = dbhelper.RunScalar➥

(base.ConnectionString ,
_productimgselectbyiddataparameters.Parameters);

return imagedata;
}

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

public class ProductImageSelectByIDDataParameters
{

private Product _product;
private SqlParameter[] _parameters;

public ProductImageSelectByIDDataParameters(Product product)
{

Product = product;
Build();

}

private void Build()

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 247

7249ch16.qxd 11/13/06 9:21 PM Page 247

{

SqlParameter[] parameters =
{

new SqlParameter("@ProductImageID" , Product.ImageID)
};

Parameters = parameters;
}

public Product Product
{

get { return _product; }
set { _product = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

6. In the previous code, notice that you also added the name of the newly created stored procedure to the
StoredProcedure class. This parameter class will build the necessary parameters to be passed into the
stored procedure. You now have the data access layer code implemented and can implement the busi-
ness logic layer. Proceed to the LittleItalyVineyard.BusinessLogic class library project, add a new class
named ProcessGetProductImage, and add the following code, as shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetProductImage : IBusinessLogic
{

private Product _product;
private Stream _imagestream;

public ProcessGetProductImage()
{

}

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG248

7249ch16.qxd 11/13/06 9:21 PM Page 248

public void Invoke()
{

ProductImageSelectByIDData selectproductimage =➥

new ProductImageSelectByIDData();
selectproductimage.Product = this.Product;

Product.ImageData = (byte[]) selectproductimage.Get();
ImageStream = new MemoryStream➥

((byte[]) Product.ImageData);
}

public Stream ImageStream
{

get { return _imagestream; }
set { _imagestream = value; }

}

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

}

7. The code in the business logic layer is now set to be used from the presentation layer, which will return
you to the ASHX file that will initiate the request. Add the following code that will query the binary data
of the product image and display it:

<%@ WebHandler Language="C#" Class="ImageViewer" %>

using System;
using System.Web;
using System.IO;

using LittleItalyVineyard.BusinessLogic;
using LittleItalyVineyard.Common;

public class ImageViewer : IHttpHandler
{
public void ProcessRequest (HttpContext context)
{

Product product = new Product();
product.ImageID = int.Parse➥

(context.Request.QueryString["ImageID"]);

ProcessGetProductImage processget = new ProcessGetProductImage();
processget.Product = product;

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 249

7249ch16.qxd 11/13/06 9:21 PM Page 249

Stream stream = null;

processget.Invoke();

context.Response.ContentType = "image/jpeg";
context.Response.Cache.SetCacheability(HttpCacheability.Public);
context.Response.BufferOutput = false;

int buffersize = 1024 * 16;
byte[] buffer = new byte[buffersize];

stream = processget.ImageStream;
int count = stream.Read(buffer, 0, buffersize);

while (count > 0)
{

context.Response.OutputStream.Write(buffer , 0 , count);
count = stream.Read(buffer , 0 , buffersize);

}
}

public bool IsReusable
{

get { return false; }
}

}

With the previous finalized code to display the individual product images, the product catalog now has the ability
to display the images. However, since you do not have any products in the database at this time, this code will not
actually run since no products will be bound to the DataList. You will revisit this code in Chapter 21 when I discuss
the administrator control panel of the application; you’ll then have the ability to add products to the catalog and
edit them.

Creating the Product Details
You have now implemented the complete product catalog where the user will have the ability
to browse through the different items. It is now time to implement the functionality that will
allow the user to dig into the details of a specific product. You will accomplish this by using
a single web page that will display the complete information for an individual product that the
user selects.

Certainly you have been to a website such as Amazon.com where you browse through
a listing of products and one or several of those products interests you. Naturally, you click the
image or the heading of the product, which takes you to a page dedicated to that product. This
details page displays the complete description of the product along with other information, such
as other suggested products that are similar and even some feedback from other customers
who have purchased the product.

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG250

7249ch16.qxd 11/13/06 9:21 PM Page 250

Your application will be similar because you will have the same type of details web page.
There will be a larger image of the product, the full description of the product, a link to add
the item to the shopping cart, and the possibility to scale later to add other suggested items
and even user feedback about the product.

The following exercise will walk you through the necessary steps to implement the product
details.

Exercise: Implementing the Product Details

This exercise shows how to create all the code in the different architecture layers to display the product details
when a user ultimately selects an individual product from the catalog. Follow these steps:

1. Start with your database, and create the stored procedure that will be required to query the database
for a single product specified by the ID:

CREATE PROCEDURE ProductByID_Select

@ProductID int

AS

SELECT
ProductID,
ProductName,
ProductCategoryName,
ProductImageID,
Description,
Price
FROM Products
INNER JOIN ProductCategory
ON ProductCategory.ProductCategoryID = Products.ProductCategoryID
WHERE ProductID = @ProductID

2. You can now move along to the data access layer. In a prior exercise, you already implemented the
code in the data access layer to use the stored procedure. Let’s revisit that code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductSelectByIDData : DataAccessBase
{

private Product _product;

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 251

7249ch16.qxd 11/13/06 9:21 PM Page 251

public ProductSelectByIDData()
{

StoredProcedureName = StoredProcedure.Name.➥

ProductByID_Select.ToString();
}

public DataSet Get()
{

DataSet ds;

ProductSelectByIDDataParameters➥

_productselectbyiddataparameters = new➥

ProductSelectByIDDataParameters(Product);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString ,

_productselectbyiddataparameters.Parameters);

return ds;
}

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

public class ProductSelectByIDDataParameters
{

private Product _product;
private SqlParameter[] _parameters;

public ProductSelectByIDDataParameters(Product product)
{

Product = product;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@ProductID" , Product.ProductID)
};

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG252

7249ch16.qxd 11/13/06 9:21 PM Page 252

Parameters = parameters;
}

public Product Product
{

get { return _product; }
set { _product = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

3. The data access code is similar to that of the other exercises. Moving along, proceed to the business
logic layer, add a new class named ProcessGetProductByID, and focus on the code that will call upon
that in the data access layer:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetProductByID : IBusinessLogic
{

private Product _product;
private DataSet _resultset;

public ProcessGetProductByID()
{

}

public void Invoke()
{

ProductSelectByIDData selectproduct = ➥

new ProductSelectByIDData();
selectproduct.Product = Product;
ResultSet = selectproduct.Get();

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 253

7249ch16.qxd 11/13/06 9:21 PM Page 253

Product.Name = ResultSet.Tables[0].Rows[0]➥

["ProductName"].ToString();
Product.Description = ResultSet.Tables[0].Rows[0]➥

["Description"].ToString();
Product.Price = Convert.ToDecimal(ResultSet.Tables[0].➥

Rows[0]["Price"].ToString());
Product.ImageID = int.Parse(ResultSet.Tables[0].➥

Rows[0]["ProductImageID"].ToString());
Product.ProductCategory.ProductCategoryName = ➥

ResultSet.Tables[0].Rows[0]["ProductCategoryName"].ToString();
}

public Product Product
{

get { return _product; }
set { _product = value; }

}

private DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

4. The final task is to focus your efforts on the web page in the presentation layer, the ProductDetails.aspx
web form. Proceed to the ProductDetails.aspx web form and to the HTML code. You will add to the
HTML code a table, an image, and several labels to display the product description, name, and price
along with a button that will allow the user to add the product to the shopping cart:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="ProductDetails.aspx.cs"
Inherits="ProductDetails"
Title="Little Italy Vineyard | Product Details" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<table cellSpacing="0" cellPadding="0" width="100%" border="0">
<tr>

<td vAlign="top" align="left">
<table border="0" cellpadding="1" cellspacing="0" width="100%">

<tr>
<td><img src="images/spacer.gif" width="1" height="15"

border="0" /></td>
</tr>

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG254

7249ch16.qxd 11/13/06 9:21 PM Page 254

<tr>
<td><img src="images/spacer.gif" width="50" height="1"
border="0" /></td>
<td valign="top" align="right">

<asp:Image ID="imageProductDetail" runat="server"
width="100px" BorderStyle="Double" BorderWidth="3px"
BorderColor="#92775C" />
</td>
<td width="100%" valign="top">

<table cellpadding="0" cellspacing="0" border="0"
width="100%">
<tr>

<td width="17">
<img src="images/spacer.gif"

width="17" height="3" border="0" /></td>
<td></td>

</tr>
<tr>

<td></td>
<td class="ProductListHead">

<asp:label id="labelProductName" runat="server" />
</td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="5" border="0" /></td></tr>
<tr>

<td colspan="2">
<table cellpadding="0" cellspacing="0"
border="0" width="75%">

<tr><td class="prodUnderlineBG"
width="100%"></td></tr>

<tr><td>
<img src="images/spacer.gif"

width="1" height="1" border="0" />
</td></tr>

<tr><td>

</td></tr>

</table>
</td>

</tr>
<tr>

<td></td>
<td><asp:label id="labelDescription"

runat="server"></asp:label></td>
</tr>

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 255

7249ch16.qxd 11/13/06 9:21 PM Page 255

<tr><td><img src="images/spacer.gif" width="1"
height="8" border="0" /></td></tr>

<tr>
<td></td>
<td>

Price:

<asp:label id="labelPrice" runat="server" />

</td>
</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="8" border="0" /></td></tr>
<tr>

<td></td>
<td>Category: <asp:label id="labelCategory"

runat="server" />
</td>

</tr>
<tr><td>
<img src="images/spacer.gif" width="1"

height="12" border="0" /></td></tr>
<tr>

<td></td>
<td>

<a href="AddToCart.aspx?ProductID=➥

<%= Request.QueryString["ProductID"] %>"
class="red">Add To Cart

</td>
</tr>
<tr><td>

<img src="images/spacer.gif" width="1"
height="5" border="0" /></td></tr>

<tr>
<td></td>

<td><asp:hyperlink id="linkContinueShopping"
runat="server" Text="Continue Shopping"

NavigateUrl="Winery.aspx">
</asp:hyperlink></td>

</tr>
</table>

</td>
<td><img src="images/spacer.gif" width="15" height="1"

border="0" /></td>
</tr>

</table>

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG256

7249ch16.qxd 11/13/06 9:21 PM Page 256

</td>
</tr>
<tr>

<td>
<img src="images/spacer.gif" width="1"
height="10" border="0" /></td>

</tr>
</table>
</asp:Content>

5. You now have the layout and HTML to display the individual details for a specific product. If you switch
to design view in Visual Studio, you will see that it resembles Figure 16-13.

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 257

Figure 16-13. Design view: ProductDetails.aspx

6. The remaining item to implement is the actual code in the web page to connect the information that is
queried from the database. The code will start by getting the value for the query string that is passed
into the page and will then call the business logic layer and eventually return the information to set the
labels, as shown here:

using System;
using System.Data;
using System.Configuration;
using System.Collections;

7249ch16.qxd 11/13/06 9:21 PM Page 257

using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.BusinessLogic;
using LittleItalyVineyard.Common;

public partial class ProductDetails : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

if (!IsPostBack)
{

LoadProduct();
}

}

private void LoadProduct()
{

Product prod = new Product();
prod.ProductID = int.Parse➥

(Request.QueryString["ProductID"]);

ProcessGetProductByID getProduct = new ProcessGetProductByID();
getProduct.Product = prod;

try
{

getProduct.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

labelProductName.Text =getProduct.Product.Name;
labelDescription.Text = getProduct.Product.Description;
labelPrice.Text = string.Format("{0:c}", ➥

getProduct.Product.Price);
imageProductDetail.ImageUrl ➥

= "ImageViewer.ashx?ImageID=" + ➥

getProduct.Product.ImageID.ToString();
labelCategory.Text = getProduct.Product.➥

ProductCategory.ProductCategoryName;

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG258

7249ch16.qxd 11/13/06 9:21 PM Page 258

}
}

This code brings you to the conclusion of yet another exercise; this exercise showed how to display all the details
for a specific product when the user selects one from the catalog.

Searching the Catalog
Throughout the chapter, I have discussed in detail how to show all the products in the catalog
as well as display the individual details of a single product. You also need to implement the
ability to search the catalog and have the search results displayed. The functionality to search
for the products is vital to the overall system because many customers will know or have a good
idea about what they want to purchase and so can search for it rather than browse the products.
Given the competition, if your customer cannot find what they are looking for, they cannot
make the purchase; in fact, they may go to another company where they can find their prod-
uct more easily. Thus, your client would miss out on a sale.

The potential for losing sales as a result of users not being able to find your products could
result in the failure of your client’s online business. Therefore, to prevent this as much as pos-
sible, the following exercise will show how to implement a user-friendly and easy method for
your customer to easily find what they want.

Exercise: Implementing the Search Functionality

This exercise shows how to implement the search functionality in the database, data access, business logic, and
presentation layers of the architecture. This will result in providing the users with a simple yet effective way of
searching the product catalog for what they want. Follow these steps:

1. Similar to the other exercises, you will first focus your attention on the stored procedure that will query
the database supplied with the criteria that was specified by the user. Open Microsoft SQL Server
Management Studio, and create the following script in the LittleItalyVineyard database:

CREATE PROCEDURE Products_SelectSearch

@SearchCriteria nvarchar(255)

AS

SELECT
ProductID,
ProductName,
ProductCategoryName,
ProductImageID,
SUBSTRING(Description, 1, 150) + '...' AS Description,
Price
FROM Products

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 259

7249ch16.qxd 11/13/06 9:21 PM Page 259

INNER JOIN ProductCategory
ON ProductCategory.ProductCategoryID = Products.ProductCategoryID
WHERE
ProductCategoryName LIKE '%' + @SearchCriteria + '%'
OR
ProductName LIKE '%' + @SearchCriteria + '%'
OR
Description LIKE '%' + @SearchCriteria + '%'

Notice this is the same procedure you used to select all the products from the database, with the
exception of adding a detailed WHERE clause. In the WHERE clause, you have added three pieces of
information. Each piece takes the ProductCategoryName, ProductName, and Description and compares
it to the @SearchCriteria parameter, which is what the user entered in the search box. Notice you have
used the LIKE keyword along with the % symbols prior to the @SearchCriteria parameter and at the
end. As a result of using this methodology, the search will look to match a pattern of the criteria and
not for an exact match, thus giving more flexibility for returning results to the user. Finally, execute the
stored procedure script against the database.

2. You can proceed to the data access layer to add the class and code that will utilize the stored procedure
to query the products based on the search criteria. To do so, proceed to the LittleItalyVineyard.DataAccess
class library, and add a new class to the Select solution folder named ProductSelectSearchData. Add
the code similar to that of the other data access classes, as shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductSelectSearchData : DataAccessBase
{

private string _searchcriteria;

public ProductSelectSearchData()
{

base.StoredProcedureName = StoredProcedure.Name.➥

Products_SelectSearch.ToString();
}

public DataSet Get()
{

DataSet ds;

ProductSelectSearchDataParameters ➥

_productselectsearchdataparameters = new ➥C
ProductSelectSearchDataParameters(SearchCriteria);

DataBaseHelper dbhelper = new DataBaseHelper➥

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG260

7249ch16.qxd 11/13/06 9:21 PM Page 260

(StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString ,

_productselectsearchdataparameters.Parameters);

return ds;
}

public string SearchCriteria
{

get { return _searchcriteria; }
set { _searchcriteria = value; }

}
}

public class ProductSelectSearchDataParameters
{

private string _searchcriteria;
private SqlParameter[] _parameters;

public ProductSelectSearchDataParameters(string searchcriteria)
{

SearchCriteria = searchcriteria;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@SearchCriteria" , SearchCriteria)
};

Parameters = parameters;
}

public string SearchCriteria
{

get { return _searchcriteria; }
set { _searchcriteria = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 261

7249ch16.qxd 11/13/06 9:21 PM Page 261

3. You now have the complete code in the data access layer that will use the newly created stored proce-
dure that will query the database for all products that match the submitted criteria. You will now need
to proceed to the business logic to implement the necessary class and code. Therefore, add a new
class to the LittleItalyVineyard.BusinessLogic class library project named ProcessGetProductsSearch,
and add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetProductsSearch : IBusinessLogic
{

private DataSet _resultset;
private string _searchcriteria;

public ProcessGetProductsSearch()
{

}

public void Invoke()
{

ProductSelectSearchData productdatasearch = ➥

new ProductSelectSearchData();
productdatasearch.SearchCriteria = this.SearchCriteria;
ResultSet = productdatasearch.Get();

}

public string SearchCriteria
{

get { return _searchcriteria; }
set { _searchcriteria = value; }

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG262

7249ch16.qxd 11/13/06 9:21 PM Page 262

4. Finally, you’ll move on to the presentation layer where you will initiate the searching of the products.
This will require you to update the existing Winery.aspx web form. Your first task is to add a text box
and a command button so the user will be able to enter criteria to search and then execute the search
by clicking the button. The revised HTML code will look like the following:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="Winery.aspx.cs"

Inherits="Winery" Title="Little Italy Vineyard | The Vineyard" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
runat="Server">

<table cellpadding="0" cellspacing="0" border="0" width="100%">

<tr><td><img src="images/spacer.gif" width="1" height="5"
border="0" /></td></tr>
<tr>

<td valign="middle" align="right" width="100%">

<asp:TextBox ID="textSearch" runat="server" CssClass="textField">
</asp:TextBox>

<asp:Button ID="commandSearch"
runat="server" Text="Search"
OnClick="commandSearch_Click"

CssClass="button" />

</td>
<td><img src="images/spacer.gif" width="35" height="1"

border="0" /></td>
</tr>
<tr><td><img src="images/spacer.gif" width="1" height="5"

border="0" /></td></tr>
<tr>

<td align="center" colspan="2">
<table cellpadding="0" cellspacing="0"

border="0" width="95%">
<tr>

<td width="100%" class="separatorBG">
</td>

<td>

</td>

</tr>
</table>

</td>
<td></td>

</tr>
</table>

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 263

7249ch16.qxd 11/13/06 9:21 PM Page 263

<asp:Panel ID="panelResults" runat="Server"
Visible="false" Height="24px">
<table border="0" cellpadding="1" cellspacing="0" width="100%">

<tr>
<td><img src="images/spacer.gif" width="50" height="1"

border="0" /></td>
<td valign="top" width="100%" nowrap>No Results Found!</td>

</tr>
</table>

</asp:Panel>

<asp:DataList ID="datalistProducts" RepeatColumns="1" runat="server"
Width="100%">

<ItemTemplate>
<table border="0" cellpadding="1" cellspacing="0" width="100%">

<tr>
<td><img src="images/spacer.gif" width="50" height="1"

border="0" /></td>
<td valign="top" align="right">

<a href='ProductDetails.aspx?ProductID=<%# Eval("ProductID") %>'>
<img src='ImageViewer.ashx?ImageID=<%# Eval("ProductImageID") %>'

height="85" border="0" class="prodBorder">

</td>
<td width="100%" valign="top">

<table cellpadding="0" cellspacing="0" border="0"
width="100%"><tr>

<td width="17"><img src="images/spacer.gif" width="17"
height="3" border="0" /></td>

<td></td>
</tr>
<tr>

<td></td>
<td class="ProductListHead">

<a href='ProductDetails.aspx?ProductID=<%# Eval("ProductID") %>'>
<%# Eval("ProductName") %></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="5" border="0" /></td></tr>
<tr>

<td colspan="2">
<table cellpadding="0" cellspacing="0" border="0"

width="75%">
<tr><td class="prodUnderlineBG" width="100%">

</td></tr>

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG264

7249ch16.qxd 11/13/06 9:21 PM Page 264

<tr><td><img src="images/spacer.gif" width="1"
height="1" border="0" />

</td></tr>
<tr><td>

</td></tr>
</table>

</td>
</tr>
<tr>

<td></td>
<td><%# Eval("Description") %></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="5" border="0" /></td></tr>
<tr>

<td></td>
<td>

Price:

<%# Eval("Price", "{0:c}") %>

</td>
</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="5" border="0" /></td></tr>
<tr>

<td></td>
<td>

<a href='AddToCart.aspx?ProductID=<%# Eval("ProductID") %>'>

Add To Cart

</td>
</tr>

</table>
</td>
<td><img src="images/spacer.gif" width="15" height="1"

border="0" /></td>
</tr>

</table>
</ItemTemplate>

</asp:DataList>

</asp:Content>

In addition to the command button and the text box, you also added a panel named panelResults that
has the visible property set to false. This panel will appear only when the user searches and the search
subsequently returns no results; the panel will inform the user that there are no results.

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 265

7249ch16.qxd 11/13/06 9:21 PM Page 265

5. Moving along, you now have the text box and command button added to the web page and can add
the code that will take the search criteria and return the results. Proceed to the code view of the
Winery.aspx page, and add the following code:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.BusinessLogic;

public partial class Winery : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

if (! IsPostBack)
{

LoadProducts();
}

this.Form.DefaultButton = commandSearch.UniqueID;
this.textSearch.Focus();

}

private void LoadProducts()
{

ProcessGetProducts processproducts = new ProcessGetProducts();

try
{
processproducts.Invoke();

}
catch
{

Response.Redirect("ErrorPage.aspx");
}

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG266

7249ch16.qxd 11/13/06 9:21 PM Page 266

datalistProducts.DataSource = processproducts.ResultSet;
datalistProducts.DataBind();

}

private void LoadProducts(string searchcriteria)
{

ProcessGetProductsSearch processsearch = ➥

new ProcessGetProductsSearch();
processsearch.SearchCriteria = searchcriteria;

try
{

processsearch.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

if (processsearch.ResultSet.Tables[0].Rows.Count > 0)
{

panelResults.Visible = false;
datalistProducts.DataSource = processsearch.ResultSet;
datalistProducts.DataBind();

}
else
{

panelResults.Visible = true;
datalistProducts.DataBind();

}
}

protected void commandSearch_Click(object sender, EventArgs e)
{

LoadProducts(textSearch.Text);
}

}

Simply put, you overloaded the LoadProducts method to include the search criteria, which will then call the previ-
ous code you added in the exercise. Finally, you check whether the result set returned and whether there are more
than zero items in the set. If there are zero items, you display the panel informing the user that there are no results.
You will also notice two other pieces of code in the page load event. This code ensures that the command button is
the default button on the page so that when the user presses Enter, they will execute the command button. The
other code sets the focus to the text box so the user does not have to click in the text box prior to typing their
search criteria.

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG 267

7249ch16.qxd 11/13/06 9:21 PM Page 267

Summary
You have successfully developed the product catalog for your application. I mentioned that in
the exercises, since the database doesn’t contain any products at this time, you will not be able
to fully test the code you have implemented. That is OK, because you will revisit this topic many
times in Chapter 21 when you add the administrator control panel, which is where you will set
up the functionality to add and edit all the products for the catalog. Now that you have a work-
ing product catalog, you need to add the functionality so the customers can add the products
they want to purchase to their shopping cart and ultimately process their payment. With that
said, let’s waste no time and get started with the next chapter, where you’ll learn how to fully
implement the shopping cart for your application.

CHAPTER 16 ■ DEVELOPING THE PRODUCT CATALOG268

7249ch16.qxd 11/13/06 9:21 PM Page 268

Building the Shopping Cart

You have finished your product catalog for your customers to browse through and (you
hope) make purchases. So, now that the product catalog is functional, you just need to popu-
late it with the actual products for sale. In this chapter, you’ll implement the shopping cart,
which identifies the products that a customer wants to purchase and provides a mechanism to
allow them to submit a payment for the merchandise.

The application will display the products in the product catalog that the customer can
click to add them to their shopping cart. You want to have an easy way for customers to add as
many products to their shopping cart as they want, and you want to give them an easy way to
update their current shopping cart by changing the quantity of the products or changing their
mind and deleting an item altogether. This chapter will show you how to incorporate all this
functionality in a concise manner, and it includes extensive exercises that show how to imple-
ment the code you need.

Specifically, this chapter will cover how to implement the code for the following functionality:

• Adding an item to the cart

• Displaying the shopping cart

• Updating the shopping cart

• Processing abandoned carts

Adding to the Shopping Cart
The basic functionality of a shopping cart is the user’s ability to add a product from the catalog
to the shopping cart. You will need to allow the user to easily add any product they view to the
shopping cart, and you need to display information about the product they just added. For
instance, a customer will browse through the catalog and come across a product they want to
purchase, such as a bottle of Merlot, which will fall under the Red Wine category. They then
click the Add To Cart button, which will add this information to the database and subsequently
display the shopping cart to the customer. You’ll need to account for several aspects, such as
recording the customer’s information and establishing a new customer account, when this
action takes place.

The following exercise will walk you through all the steps necessary to achieve this
functionality.

269

C H A P T E R 1 7

■ ■ ■

7249ch17.qxd 11/13/06 9:22 PM Page 269

Exercise: Inserting a Product in the Shopping Cart

This exercise shows how to insert the proper information in the database when a user adds a product to their
shopping cart and then sees the shopping cart with the selected items. Follow these steps:

1. You’ll start at the database and create the stored procedure script. This stored procedure is named
ShoppingCart_Insert, and it is fairly complex. It will first query the number of items that reside in the
shopping cart with the same product ID and the same cart ID. Then, if that number is greater than zero,
the product found will be updated. If that number is zero, the product will be inserted in the ShoppingCart
table. So, execute the following script against the database:

CREATE PROCEDURE ShoppingCart_Insert

@CartGUID nvarchar(50),
@ProductID int,
@Quantity int

AS

DECLARE @ItemCount int

SELECT
@ItemCount = Count(ProductID)
FROM
ShoppingCart
WHERE
ProductID = @ProductID
AND
CartGUID = @CartGUID

IF @ItemCount > 0 /* Update quantity */
UPDATE
ShoppingCart
SET Quantity = (@Quantity + ShoppingCart.Quantity)
WHERE
ProductID = @ProductID
AND
CartGUID = @CartGUID

ELSE /* No quantity found - insert */
INSERT INTO ShoppingCart
(CartGUID, ProductID, Quantity)
VALUES
(@CartGUID, @ProductID, @Quantity)

CHAPTER 17 ■ BUILDING THE SHOPPING CART270

7249ch17.qxd 11/13/06 9:22 PM Page 270

2. You have created the stored procedure in the database to use. Next, proceed to the data access layer
and to the LIttleItalyVineyard.DataAccess class library project. In this project, since this is the first time
you are inserting an item in the database, you need to create a folder in the project, thus creating
another namespace. To do so, right-click the LittleItalyVineyard.DataAccess class library, and choose
Add ➤ New Folder, as shown in Figure 17-1. Please note that this will create a physical folder on the
file system and not a virtual folder.

Figure 17-1. Adding a new folder

3. This creates a new folder in the class library project. Next, rename the new folder to Insert, as shown
in Figure 17-2.

CHAPTER 17 ■ BUILDING THE SHOPPING CART 271

7249ch17.qxd 11/13/06 9:22 PM Page 271

Figure 17-2. Naming the new folder

4. You now have a new folder named Insert in the project. As mentioned, this has created a new name-
space, LittleItalyVineyard.DataAccess.Insert. The next step is to add a class to this new folder and
namespace. To do so, right-click the Insert folder, and choose Add ➤ Class, as shown in Figure 17-3.

CHAPTER 17 ■ BUILDING THE SHOPPING CART272

7249ch17.qxd 11/13/06 9:22 PM Page 272

Figure 17-3. Adding a new class

5. After adding the new class, you will see the Add New Item dialog box, which you have seen many
times before. Name the new class ShoppingCartInsertData, as shown in Figure 17-4, and click the
Add button.

CHAPTER 17 ■ BUILDING THE SHOPPING CART 273

7249ch17.qxd 11/13/06 9:22 PM Page 273

Figure 17-4. Naming the ShoppingCartInsertData class

6. This creates the ShoppingCartInsertData class in your project. You will see the standard shell code
for a new class. However, before modifying and adding to this new class, you’ll proceed to the
StoredProcedure class, where the names of the stored procedures are maintained, and add the latest
stored procedure to the list as identified, as shown here:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess
{

public class StoredProcedure
{

public enum Name
{

ProductByID_Select ,
Products_Select ,
ProductImage_Select ,
Products_SelectSearch ,
ShoppingCart_Insert

}
}

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART274

7249ch17.qxd 11/13/06 9:22 PM Page 274

7. This adds the ShoppingCart_Insert stored procedure to the enumeration of the StoredProcedure class,
so you can return to the ShoppingCartInsertData class for its modification. First add the public identifier
to the class, inheriting from the DataAccessBase class. Then add the System.Data, System.Data.SqlClient,
and LittleItalyVineyard.Common namespaces, as shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Insert
{

public class ShoppingCartInsertData : DataAccessBase
{
}

}

8. Next, add the constructor of the ShoppingCartInsertData class that will, within the constructor, specify
the name of the stored procedure that will be used. Then add a common object field and property that
will be populated from other tiers of the architecture and will be used within the class. The code is as
follows:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Insert
{

public class ShoppingCartInsertData : DataAccessBase
{

private ShoppingCart _shoppingcart;

public ShoppingCartInsertData()
{

StoredProcedureName = StoredProcedure.Name.➥

ShoppingCart_Insert.ToString();
}

CHAPTER 17 ■ BUILDING THE SHOPPING CART 275

7249ch17.qxd 11/13/06 9:22 PM Page 275

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

}

9. The ShoppingCartInsertData class is beginning to shape up quite well. In the following steps, you’ll add
the method that will insert the values into the ShoppingCart table, but prior to doing so, you need to
add the associated parameters class. This class will be named ShoppingCartInsertDataParameters, and
it will also have a common object property of the ShoppingCart and a method to build the parameters
that will be necessary for the stored procedure. The code is as follows:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Insert
{

public class ShoppingCartInsertData : DataAccessBase
{

private ShoppingCart _shoppingcart;

public ShoppingCartInsertData()
{

StoredProcedureName = StoredProcedure.Name.➥

ShoppingCart_Insert.ToString();
}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

public class ShoppingCartInsertDataParameters
{

private ShoppingCart _shoppingcart;
private SqlParameter[] _parameters;

public ShoppingCartInsertDataParameters➥

(ShoppingCart shoppingcart)

CHAPTER 17 ■ BUILDING THE SHOPPING CART276

7249ch17.qxd 11/13/06 9:22 PM Page 276

{
ShoppingCart = shoppingcart;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@CartGUID" ,➥

ShoppingCart.CartGUID) ,
new SqlParameter("@ProductID",➥

ShoppingCart.ProductID) ,
new SqlParameter("@Quantity",➥

ShoppingCart.Quantity)
};

Parameters = parameters;
}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

10. Now move on to your final method within the ShoppingCartInsertData class, Add(). This method will
utilize the parameters class created in the previous step and actually execute the information in the
database and more specifically in the ShoppingCart table. The method will consist of instantiating
the ShoppingCartInsertDataParameters class and passing in the ShoppingCart common class.After that, the
DBHelper class, which will allow for systematic access to executing the stored procedure specified, is again
passed in the class followed by setting the parameters equal to the ShoppingCartInsertDataParameters
class and then finally the Run() method of the DBHelper class. You can see the complete code here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

CHAPTER 17 ■ BUILDING THE SHOPPING CART 277

7249ch17.qxd 11/13/06 9:22 PM Page 277

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Insert
{

public class ShoppingCartInsertData : DataAccessBase
{

private ShoppingCart _shoppingcart;
private ShoppingCartInsertDataParameters➥

_shoppingcartinsertdataparameters;

public ShoppingCartInsertData()
{

StoredProcedureName = StoredProcedure.Name.➥

ShoppingCart_Insert.ToString();
}

public void Add()
{

_shoppingcartinsertdataparameters = new➥

ShoppingCartInsertDataParameters(ShoppingCart);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
dbhelper.Parameters =➥

_shoppingcartinsertdataparameters.Parameters;
dbhelper.Run();

}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

public class ShoppingCartInsertDataParameters
{

private ShoppingCart _shoppingcart;
private SqlParameter[] _parameters;

public ShoppingCartInsertDataParameters➥

(ShoppingCart shoppingcart)
{

ShoppingCart = shoppingcart;
Build();

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART278

7249ch17.qxd 11/13/06 9:22 PM Page 278

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@CartGUID" ,➥

ShoppingCart.CartGUID) ,
new SqlParameter("@ProductID",➥

ShoppingCart.ProductID) ,
new SqlParameter("@Quantity" ,➥

ShoppingCart.Quantity)
};

Parameters = parameters;
}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

11. The data access class is now complete. Next, you’ll move on to the business logic layer and imple-
ment the necessary code that will use the code you just added to the data access tier. So, proceed
to the LittleItalyVineyard.BusinessLogic class library, and add a new class to the project named
ProcessAddShoppingCart. Upon adding the class, you will again see the standard template class code.
Add the LittleItalyVineyard.Common and LittleItalyVineyard.DataAccess.Insert namespaces, the con-
structor, the IBusinessLogic interface, and finally the public identifier for the class. The code is as follows:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Insert;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessAddShoppingCart : IBusinessLogic
{

public ProcessAddShoppingCart()

CHAPTER 17 ■ BUILDING THE SHOPPING CART 279

7249ch17.qxd 11/13/06 9:22 PM Page 279

{

}
}

}

12. Your work is not yet complete. You need to add the necessary implementation that the IBusinessLogic
interface requires. To do so, you add the Invoke() function that will later use the data access code you
just added:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Insert;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessAddShoppingCart : IBusinessLogic
{

public ProcessAddShoppingCart()
{

}

public void Invoke()
{

}

}
}

13. Now add the common class ShoppingCart to the code with its associated field name, as shown here:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Insert;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessAddShoppingCart : IBusinessLogic
{

public ProcessAddShoppingCart()
{

CHAPTER 17 ■ BUILDING THE SHOPPING CART280

7249ch17.qxd 11/13/06 9:22 PM Page 280

}

public void Invoke()
{

}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

}

14. The final code to implement in the business logic tier is the code in the Invoke() method that will use
the data access class, ShoppingCartInsertData, that you created earlier in this exercise. This class will
be instantiated followed by passing the ShoppingCart property of the ProcessAddShoppingCart class to
that of the ShoppingCartInsertData class and finally the Add() method. All the code will be wrapped
with a try/catch statement, as shown here:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Insert;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessAddShoppingCart : IBusinessLogic
{

private ShoppingCart _shoppingcart;

public ProcessAddShoppingCart()
{

}

public void Invoke()
{

ShoppingCartInsertData shoppingcartdata = new➥

ShoppingCartInsertData();
shoppingcartdata.ShoppingCart = this.ShoppingCart;
shoppingcartdata.Add();

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART 281

7249ch17.qxd 11/13/06 9:22 PM Page 281

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

}

15. The business logic tier code is complete. You can now proceed to the presentation tier to add the nec-
essary code that will utilize the code you have implemented thus far. Proceed to the AddToCart.aspx
web form and to the Hypertext Markup Language (HTML) source. You will see the existing code of
a content placeholder. You can delete this code and leave only the page declarations, as shown here:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="AddToCart.aspx.cs"
Inherits="AddToCart" Title="Untitled Page" %>

16. It will be evident soon why you do not need any HTML code for this web form. Now, switch to the C#
code of the web form where you can see the page load event with nothing implemented:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class AddToCart : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

}
}

17. The first item to add is the namespace to the business logic tier and the common objects of the appli-
cation, as shown here:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;

CHAPTER 17 ■ BUILDING THE SHOPPING CART282

7249ch17.qxd 11/13/06 9:22 PM Page 282

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;

public partial class AddToCart : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

}
}

18. The code for the web form will consist of basically two parts. The first part will use the business logic
code, and if a successful addition of the information is added to the shopping cart, the user will be
redirected to the shopping cart web page. Second, you will need to retrieve the shopping cart ID, which
will be the global unique identifier (GUID) that is stored within a cookie on the user’s local machine. If
the cookie is not found, it will in most cases mean that the user is adding a product to the shopping
cart for the first time; therefore, a cookie with a new GUID will be created. If the user is a return cus-
tomer or they are adding subsequent items to the shopping cart, the GUID will be retrieved from the
local cookie. To retrieve the GUID, you will implement a property that will return the GUID. This property
will call upon the static class Utilities in the LittleItalyVineyard.Operational project library and name-
space. Add the static function GetCartGUID() to the Utilities class as follows:

public static string GetCartGUID()
{

if (HttpContext.Current.Request.Cookies➥

["LittleItalyVineyard"] != null)
{

return HttpContext.Current.Request.Cookies➥

["LittleItalyVineyard"]["CartID"].ToString();
}
else
{

Guid CartGUID = Guid.NewGuid();
HttpCookie cookie = new HttpCookie("LittleItalyVineyard");
cookie.Values.Add("CartID" , CartGUID.ToString());
cookie.Expires = DateTime.Now.AddDays(30);
HttpContext.Current.Response.AppendCookie(cookie);

return CartGUID.ToString();
}

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART 283

7249ch17.qxd 11/13/06 9:22 PM Page 283

19. The following is the AddToCart.aspx web form, which will utilize the GetCartGUID function from within
the Utilities class by using a read-only property, as demonstrated here:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;
using LittleItalyVineyard.Operational;

public partial class AddToCart : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

LittleItalyVineyard.Common.ShoppingCart➥

shoppingcart = new LittleItalyVineyard.Common.➥

ShoppingCart();
shoppingcart.ProductID = int.Parse(Request.➥

QueryString["ProductID"]);
shoppingcart.CartGUID = CartGUID;
shoppingcart.Quantity = 1;

ProcessAddShoppingCart procshoppingcart➥

= new ProcessAddShoppingCart();
procshoppingcart.ShoppingCart = shoppingcart;

try
{

procshoppingcart.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}
Response.Redirect("ShoppingCart.aspx");

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART284

7249ch17.qxd 11/13/06 9:22 PM Page 284

private string CartGUID
{

get { return Utilities.GetCartGUID(); }
}

}

With this code added and implemented, you have all the code in place to add a product to the shopping cart in the
database. By using a local cookie, as mentioned, you will store the unique cart ID, or cartGuid, field for the user so
that when you display the shopping cart, all the items that a user has added will appear.

Finally, since the product catalog in the database currently does not contain any products, you cannot test the code
at this time. However, I will soon demonstrate how all the code will execute from start to finish. You’ll learn how to
add the ShoppingCart web form next.

Displaying the Shopping Cart
In the previous section of the chapter, you successfully added the selected products to the
shopping cart, which added the information to the ShoppingCart table within your database.
The following exercise will show how to add the functionality so that the user will see what
they just added to the shopping cart and be able to view the list of items. This primarily will
consist of displaying the subtotal of the individual product cost along with a final total for all
the items contained in the shopping cart.

Exercise: Displaying the Shopping Cart Items

You will now learn how to display the products that you added to the shopping cart in the prior exercise. As with
the previous exercises, you will start at the database with the necessary stored procedures followed by the data
access, business logic, and presentation tiers of the architecture and code. Follow these steps:

1. You’ll first create a stored procedure that will query the ShoppingCart table in the database to display
the items that have been added according to the cart ID, or more specifically the CartGUID field. Refer
to the following script:

CREATE PROCEDURE ShoppingCart_Select

@CartGUID nvarchar(50)

AS

SELECT
ShoppingCartID,
Products.ProductName,
Quantity,
Products.Price as UnitPrice,
(Products.Price * Quantity) AS TotalPrice
FROM ShoppingCart
INNER JOIN Products ON Products.ProductID = ShoppingCart.ProductID
WHERE CartGUID = @CartGUID

CHAPTER 17 ■ BUILDING THE SHOPPING CART 285

7249ch17.qxd 11/13/06 9:22 PM Page 285

The query is a fairly straightforward select statement that provides you with an aggregate value of the
total price of an individual product. This value is calculated by multiplying the individual cost of a prod-
uct by the quantity of the product.

2. Now proceed to the data access tier code that will use the stored procedure you just created. Add
a new class to the LittleItalyVineyard.DataAccess class library within the Select folder. Name the new
class ShoppingCartSelectData. As usual, you will see the standard template code. Modify this code by
adding a public identifier to the class, and have the class inherit from the DataAccessBase class, as
shown here:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ShoppingCartSelectData : DataAccessBase
{

}
}

3. Add the namespaces System.Data, System.Data.SqlClient, and LittleItalyVineyard.Common, as
shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ShoppingCartSelectData : DataAccessBase
{

}
}

4. Moving along, first add the name of the new stored procedure to the StoredProcedure class. Then add
the constructor to the ShoppingCartSelectData class, and within the constructor, specify the name of
the new stored procedure that you will be utilizing, as shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

CHAPTER 17 ■ BUILDING THE SHOPPING CART286

7249ch17.qxd 11/13/06 9:22 PM Page 286

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ShoppingCartSelectData : DataAccessBase
{

public ShoppingCartSelectData()
{

StoredProcedureName = StoredProcedure.Name.➥

ShoppingCart_Select.ToString();
}

}
}

5. The next step in the code is to add a common object property of the ShoppingCart object. First add the
associated field name, and then add the property, as shown in the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ShoppingCartSelectData : DataAccessBase
{

private ShoppingCart _shoppingcart;

public ShoppingCartSelectData()
{

StoredProcedureName = StoredProcedure.Name.➥

ShoppingCart_Select.ToString();
}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART 287

7249ch17.qxd 11/13/06 9:22 PM Page 287

6. You are almost done with the code. The next step is to add the associated parameters class that will
handle implementing the parameters needed for the stored procedure. To do so, you will add a class to
the same class file named ShoppingCartSelectDataParameters. This class will have the standard Build()
method that will add the required parameter and expose the parameters in a Parameters property. The
code is as follows:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ShoppingCartSelectData : DataAccessBase
{

private ShoppingCart _shoppingcart;

public ShoppingCartSelectData()
{

StoredProcedureName = StoredProcedure.Name.➥

ShoppingCart_Select.ToString();
}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

public class ShoppingCartSelectDataParameters
{

private ShoppingCart _shoppingcart;
private SqlParameter[] _parameters;

public ShoppingCartSelectDataParameters➥

(ShoppingCart shoppingcart)
{

ShoppingCart = shoppingcart;
Build();

}

private void Build()
{

SqlParameter[] parameters =

CHAPTER 17 ■ BUILDING THE SHOPPING CART288

7249ch17.qxd 11/13/06 9:22 PM Page 288

{
new SqlParameter("@CartGUID" ,➥

ShoppingCart.CartGUID)
};

Parameters = parameters;
}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

7. Now that the parameter class is complete, you can add the final function, Get(), in the
ShoppingCartSelectData class. This method will use the parameters class as well as the DBHelper
class to return a DataSet from the query within the stored procedure. Here’s the code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ShoppingCartSelectData : DataAccessBase
{

private ShoppingCart _shoppingcart;

public ShoppingCartSelectData()
{

StoredProcedureName = StoredProcedure.Name.➥

ShoppingCart_Select.ToString();
}

public DataSet Get()
{

DataSet ds;

CHAPTER 17 ■ BUILDING THE SHOPPING CART 289

7249ch17.qxd 11/13/06 9:22 PM Page 289

ShoppingCartSelectDataParameters➥

_shoppingcartselectdataparameters =➥

new ShoppingCartSelectDataParameters(ShoppingCart);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString , ➥

_shoppingcartselectdataparameters.Parameters);

return ds;
}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

public class ShoppingCartSelectDataParameters
{

private ShoppingCart _shoppingcart;
private SqlParameter[] _parameters;

public ShoppingCartSelectDataParameters➥

(ShoppingCart shoppingcart)
{

ShoppingCart = shoppingcart;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@CartGUID" , ShoppingCart.CartGUID)
};

Parameters = parameters;
}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART290

7249ch17.qxd 11/13/06 9:22 PM Page 290

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

8. The code is now complete within the data access tier, so you can proceed to the business logic tier of
the application. To do so, add a new class to the LittleItalyVineyard.BusinessLogic class library named
ProcessGetShoppingCart. As with the other newly added classes, you will see the standard class template
code. Within this code, modify it to have a public identifier for the class, and implement the IBusinessLogic
interface, as shown in the following code sample:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetShoppingCart : IBusinessLogic
{

}
}

9. Similar to other steps within the exercises, you’ll add the necessary namespaces. The namespaces you
will need are the System.Data, LittleItalyVineyard.Common, and LittleItalyVineyard.DataAccess.Select
namespaces, as shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetShoppingCart : IBusinessLogic
{

}
}

CHAPTER 17 ■ BUILDING THE SHOPPING CART 291

7249ch17.qxd 11/13/06 9:22 PM Page 291

10. Moving along, you will need to add two separate properties. One property is named ResultSet, which
returns a DataSet and a common object property. ShoppingCart is the second property specified. In
addition, add the associated field names as follows:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetShoppingCart : IBusinessLogic
{

private DataSet _resultset;
private ShoppingCart _shoppingcart;

public ProcessGetShoppingCart()
{

}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

11. Next add the required Invoke() function that the IBusinessLogic interface requires. This function will
implement the data access code to ultimately return a DataSet that represents the query of the shop-
ping cart. Here’s the code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

CHAPTER 17 ■ BUILDING THE SHOPPING CART292

7249ch17.qxd 11/13/06 9:22 PM Page 292

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetShoppingCart : IBusinessLogic
{

private DataSet _resultset;
private ShoppingCart _shoppingcart;

public ProcessGetShoppingCart()
{

}

public void Invoke()
{

ShoppingCartSelectData shoppingcartdata =➥

new ShoppingCartSelectData();
shoppingcartdata.ShoppingCart = ShoppingCart;
ResultSet = shoppingcartdata.Get();

}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

12. You will now specify the information for the shopping cart to be queried and thus ultimately view the
current shopping cart. First add a web form to the web project named ShoppingCart.aspx, and have it
use the Main.master master page. Upon adding this web form, proceed to the HTML code of the
source. You will see the following HTML:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="ShoppingCart.aspx.cs"
Inherits="ShoppingCart" Title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">
</asp:Content>

CHAPTER 17 ■ BUILDING THE SHOPPING CART 293

7249ch17.qxd 11/13/06 9:22 PM Page 293

13. To move forward, you need to add the necessary HTML code that will display the shopping cart. This
will consist of a GridView control that has four columns that will be data bound: the name of the prod-
uct, the quantity of the product within a text box, the unit cost of the product, and finally the subtotal of
the product, which will be a calculation of the quantity multiplied by the unit cost. Lastly, add a table
with a Label control that will display the total items in the shopping cart. Here’s the HTML code:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="ShoppingCart.aspx.cs"
Inherits="ShoppingCart"
Title="Little Italy Vineyard | Shopping Cart" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">
<table cellpadding="0" cellspacing="0" border="0" width="100%">

<tr>
<td></td>
<td width="100%"></td>
<td></td>

</tr>
<tr>

<td></td>
<td>

<table cellpadding="0" cellspacing="0"
border="0" width="100%">
<tr>

<td width="16%" align="center">Remove</td>
<td width="30%">Product</td>
<td width="17%" align="center">Quantity</td>
<td width="18%" align="center">Unit Cost</td>
<td width="19%" align="center">Subtotal</td>

</tr>
</table>

</td>
<td></td>

</tr>
<tr>

<td></td>
<td class="prodUnderlineBG" width="100%">

</td>
<td></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="3" /></td></tr>
<tr>

<td></td>
<td>

<asp:GridView ID="gridviewShoppingCart" runat="server"
AutoGenerateColumns="false"

CHAPTER 17 ■ BUILDING THE SHOPPING CART294

7249ch17.qxd 11/13/06 9:22 PM Page 294

OnRowDataBound="gridviewShoppingCart_RowDataBound"
Width="100%" BorderWidth="0px" CellPadding="2"
ShowHeader="false">

<Columns>
<asp:TemplateField ItemStyle-Width="16%"

ItemStyle-HorizontalAlign="center">
<ItemTemplate>

<asp:CheckBox ID="checkboxDelete" runat="server" />
</ItemTemplate>

</asp:TemplateField>
<asp:TemplateField ItemStyle-Width="30%">

<ItemTemplate>
<%# Eval("ProductName") %>

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField ItemStyle-Width="17%"

ItemStyle-HorizontalAlign="center">
<ItemTemplate>

<asp:TextBox id="textQuantity" runat="server"
Columns="4" MaxLength="3" Text='<%# Eval("Quantity") %>'
width="30px" CssClass="textfield" />

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField ItemStyle-Width="18%"

ItemStyle-HorizontalAlign="center">
<ItemTemplate>

<%# Eval("UnitPrice" , "{0:c}")%>
</ItemTemplate>

</asp:TemplateField>
<asp:TemplateField ItemStyle-Width="19%"

ItemStyle-HorizontalAlign="center">
<ItemTemplate>

<%# Eval("TotalPrice" , "{0:c}")%>
</ItemTemplate>

</asp:TemplateField>
</Columns>
</asp:GridView>

</td>
<td></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="3" /></td></tr>
<tr>

<td></td>
<td class="prodUnderlineBG" width="100%">

</td>
<td></td>

CHAPTER 17 ■ BUILDING THE SHOPPING CART 295

7249ch17.qxd 11/13/06 9:22 PM Page 295

</tr>
<tr>

<td></td>
<td class="prodUnderlineBG" width="100%">

</td>
<td></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="5" /></td></tr>
<tr>

<td></td>
<td align="right">

<table border="0" cellpadding="0" cellspacing="0">
<tr>

<td>Total:</td>
<td style="width: 83px;" align="center">

<asp:Label ID="labelTotal" runat="server" Width="100%">
</asp:Label></td>

</tr>
</table>

</td>
<td></td>

</tr>
<tr><td><img src="images/spacer.gif"

width="1" height="20" /></td></tr>
</table>

</asp:Content>

14. The HTML code is now in place so you can display the items that reside in the shopping cart. The final
step is to add the C# code, which will be the entry point to utilize all the code you worked on in this
exercise. Let’s proceed to the code side of the ShoppingCart.aspx web form, and you will see that as of
now there is only the standard code displaying the page load event:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class ShoppingCart : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

CHAPTER 17 ■ BUILDING THE SHOPPING CART296

7249ch17.qxd 11/13/06 9:22 PM Page 296

}
}

15. Next you need to implement several items within the C# code section of the ShoppingCart.aspx web
form. First create a method called LoadShoppingCart, which will be called from within the page load
event that will also be wrapped in an If statement to determine whether there is a postback event.
Here is the code:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class ShoppingCart : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

if (! IsPostBack)
{

LoadShoppingCart();
}

}

private void LoadShoppingCart()
{

}
}

16. The next item you have to add is the method LoadShoppingCart to instantiate the business logic
code. To achieve this, you first need to add the LittleItalyVineyard.BusinessLogic and LittleItalyVineyard.
Common namespaces. After adding the namespaces, you will, as mentioned, instantiate the
ProcessGetShoppingCart class from the business logic code along with the necessary ShoppingCart
common object class. This common object will then be able to be passed into the business logic code,
call the Invoke() method, and if a true value is returned, data bind the gridviewShoppingCart. Here’s the
code:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;

CHAPTER 17 ■ BUILDING THE SHOPPING CART 297

7249ch17.qxd 11/13/06 9:22 PM Page 297

using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;
using LittleItalyVineyard.Operational;

public partial class ShoppingCart : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

if (! IsPostBack)
{

LoadShoppingCart();
}

}

private void LoadShoppingCart()
{

LittleItalyVineyard.Common.ShoppingCart shoppingcart = ➥

new LittleItalyVineyard.Common.ShoppingCart();
shoppingcart.CartGUID = CartGUID;

ProcessGetShoppingCart processgetcart➥

= new ProcessGetShoppingCart();
processgetcart.ShoppingCart = shoppingcart;

try
{

processgetcart.Invoke();
gridviewShoppingCart.DataSource = processgetcart.ResultSet;
gridviewShoppingCart.DataBind();

}
catch
{

Response.Redirect("ErrorPage.aspx");
}

}

private string CartGUID
{

get { return Utilities.GetCartGUID(); }
}

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART298

7249ch17.qxd 11/13/06 9:22 PM Page 298

Notice that you have used the same CartGUID() property to first check whether this user has added
items to the shopping cart by checking for a persistent cookie. If not, a new cookie is created with
a new GUID.

17. You are approaching the end of the exercise. The shopping cart now has the ability to be displayed, but
you need to implement one final item. This final item is to display the running total of all the products
that have been added to the shopping cart. This total will be displayed in the labelTotal control, which
you placed directly below the GridView. To accomplish this functionality, you will need to loop through
the GridView control as it’s being data bound. During the data binding, you will be concerned only with
actual data rows and with the TotalPrice field that is being data bound. Lastly, you will add a private
field named _totalcounter that has a data type of decimal, which will hold the running value and then
be set to the labelTotal control and formatted to a currency type. Here’s the code:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;
using LittleItalyVineyard.Operational;

public partial class ShoppingCart : System.Web.UI.Page
{

private decimal _totalcounter;

protected void Page_Load(object sender , EventArgs e)
{

if (! IsPostBack)
{

LoadShoppingCart();
}

}

private void LoadShoppingCart()
{

LittleItalyVineyard.Common.ShoppingCart shoppingcart =➥

new LittleItalyVineyard.Common.➥

ShoppingCart();
shoppingcart.CartGUID = CartGUID();

CHAPTER 17 ■ BUILDING THE SHOPPING CART 299

7249ch17.qxd 11/13/06 9:22 PM Page 299

ProcessGetShoppingCart processgetcart =➥

new ProcessGetShoppingCart();
processgetcart.ShoppingCart = shoppingcart;

try
{

processgetcart.Invoke();
gridviewShoppingCart.DataSource = processgetcart.ResultSet;
gridviewShoppingCart.DataBind();

}
catch
{

Response.Redirect("ErrorPage.aspx");
}

}

private string CartGUID
{

get { return Utilities.GetCartGUID(); }
}

protected void gridviewShoppingCart_RowDataBound(object sender , ➥

GridViewRowEventArgs e)
{

if (e.Row.RowType == DataControlRowType.DataRow)
{

_totalcounter += Convert.ToDecimal(DataBinder.Eval➥

(e.Row.DataItem , "TotalPrice"));
}

labelTotal.Text = string.Format("{0:c}" , _totalcounter);
}

}

Finally, you have arrived at the conclusion of yet another quite lengthy exercise that enabled you to show the popu-
lated shopping cart. As I have mentioned many times, no products have been added to the database as of yet, but
do not despair. Soon you will see how products will be added, and at that time you will be testing your system from
beginning to end. Now that you have a shopping cart that can be displayed, you need to add the ability for the user
to update the cart.

Updating the Shopping Cart
You now need to implement a mechanism for your users that will allow them to make alter-
ations to their shopping cart. They need to be able to edit the quantity of a single product or
several products and be able to completely remove a product from the shopping cart.

CHAPTER 17 ■ BUILDING THE SHOPPING CART300

7249ch17.qxd 11/13/06 9:22 PM Page 300

In the next exercise, you will add this functionality to allow the user to enter a different
numerical value for the quantity and to specify which products they want to remove.

Exercise: Updating the Shopping Cart

This exercise will outline how to enable the functionality to allow the user to update the shopping cart. The update
functionality will consist of deleting products and updating the quantity of products within the shopping cart. Fol-
low these steps:

1. The first task is to create two stored procedures: one stored procedure to update the quantity and one
stored procedure to delete the product from the shopping cart. Let’s start with the update stored pro-
cedure where you will be using the update statement and setting the quantity to the specified quantity,
which will be specified by the shopping cart ID. Refer to the following database script:

CREATE PROCEDURE ShoppingCart_Update

@Quantity int,
@ShoppingCartID int

AS

UPDATE ShoppingCart
SET Quantity = @Quantity
WHERE ShoppingCartID = @ShoppingCartID

2. Now let’s move to the second stored procedure, the delete stored procedure, after executing the
ShoppingCart_Update stored procedure script. This will utilize the standard delete statement to delete
the entire record from the database specified again by the shopping cart ID:

CREATE PROCEDURE ShoppingCart_Delete

@ShoppingCartID int

AS

DELETE FROM ShoppingCart
WHERE ShoppingCartID = @ShoppingCartID

3. Execute both of these scripts against the database, and add the names of these new stored procedures
to the StoredProcedure class so you can see the following enumeration of the stored procedures thus far:

using System;
using System.Collections.Generic;
using System.Text;

namespace LittleItalyVineyard.DataAccess
{

public class StoredProcedure
{

CHAPTER 17 ■ BUILDING THE SHOPPING CART 301

7249ch17.qxd 11/13/06 9:22 PM Page 301

public enum Name
{

ProductByID_Select ,
Products_Select ,
ProductImage_Select ,
Products_SelectSearch ,
ShoppingCart_Insert ,
ShoppingCart_Select ,
ShoppingCart_Update ,
ShoppingCart_Delete

}
}

}

4. You have created stored procedures and added their respective names to the enumeration within the
StoredProcedure class in the data access code. You will now add the first pieces of functionality thus
far regarding deleting and updating the database. Therefore, as you have in previous exercises, add
Update and Delete folders to the LittleItalyVineyard.DataAccess class library.

5. Next add a new class, ShoppingCartUpdateData, to the newly created Update folder. This class is similar
to the prior classes that you created with the data access code. It will also incorporate the associated
parameters class and have a method named Update():

using System;
using System.Collections.Generic;
using System.Text;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Update
{

public class ShoppingCartUpdateData : DataAccessBase
{

private ShoppingCart _shoppingcart;
private ShoppingCartUpdateDataParameters➥

_shoppingcartupdatedataparameters;

public ShoppingCartUpdateData()
{

StoredProcedureName = StoredProcedure.Name.➥

ShoppingCart_Update.ToString();
}

public void Update()
{

_shoppingcartupdatedataparameters =➥

new ShoppingCartUpdateDataParameters(ShoppingCart);

CHAPTER 17 ■ BUILDING THE SHOPPING CART302

7249ch17.qxd 11/13/06 9:22 PM Page 302

DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
dbhelper.Parameters =➥

_shoppingcartupdatedataparameters.➥

Parameters;
dbhelper.Run();

}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

public class ShoppingCartUpdateDataParameters
{

private ShoppingCart _shoppingcart;
private SqlParameter[] _parameters;

public ShoppingCartUpdateDataParameters➥

(ShoppingCart shoppingcart)
{

ShoppingCart = shoppingcart;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@Quantity" ,➥

ShoppingCart.Quantity) ,
new SqlParameter("@ShoppingCartID" ,➥

ShoppingCart.ShoppingCartID)
};

Parameters = parameters;
}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART 303

7249ch17.qxd 11/13/06 9:22 PM Page 303

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

6. While still in the data access layer, add a similar class in the Delete folder named ShoppingCartDeleteData,
which will be the same as the update class with the exception of having a Delete() method:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Delete
{

public class ShoppingCartDeleteData : DataAccessBase
{

private ShoppingCart _shoppingcart;
private ShoppingCartDeleteDataParameters➥

_shoppingcartdeletedataparameters;

public ShoppingCartDeleteData()
{

StoredProcedureName = StoredProcedure.Name.➥

ShoppingCart_Delete.ToString();
}

public void Delete()
{

_shoppingcartdeletedataparameters = new➥

ShoppingCartDeleteDataParameters(ShoppingCart);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
dbhelper.Parameters =➥

_shoppingcartdeletedataparameters.Parameters;
dbhelper.Run();

}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

CHAPTER 17 ■ BUILDING THE SHOPPING CART304

7249ch17.qxd 11/13/06 9:22 PM Page 304

public class ShoppingCartDeleteDataParameters
{

private ShoppingCart _shoppingcart;
private SqlParameter[] _parameters;

public ShoppingCartDeleteDataParameters➥

(ShoppingCart shoppingcart)
{

ShoppingCart = shoppingcart;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@ShoppingCartID" ,➥

ShoppingCart.ShoppingCartID)
};

Parameters = parameters;
}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

7. You have now completed the data access code. You can proceed to the business logic code and add
the two separate classes needed for the update and delete. The first class to add in the LittleItalyVineyard.
BusinessLogic class library is ProcessUpdateShoppingCart. This class will adhere to the implementation
of the IBusinessLogic interface, as shown here:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Update;

CHAPTER 17 ■ BUILDING THE SHOPPING CART 305

7249ch17.qxd 11/13/06 9:22 PM Page 305

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessUpdateShoppingCart : IBusinessLogic
{

private ShoppingCart _shoppingcart;

public ProcessUpdateShoppingCart()
{

}

public void Invoke()
{

ShoppingCartUpdateData shoppingcartdata =➥

new ShoppingCartUpdateData();
shoppingcartdata.ShoppingCart = this.ShoppingCart;
shoppingcartdata.Update();

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

}

8. You’re almost done with the business logic. The final class to add is the ProcessDeleteShoppingCart,
which is similar to that of the update class in the prior step in the exercise:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Delete;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessDeleteShoppingCart : IBusinessLogic
{

private ShoppingCart _shoppingcart;

public ProcessDeleteShoppingCart()
{

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART306

7249ch17.qxd 11/13/06 9:22 PM Page 306

public void Invoke()
{

ShoppingCartDeleteData shoppingcartdata =➥

new ShoppingCartDeleteData();
shoppingcartdata.ShoppingCart = this.ShoppingCart;
shoppingcartdata.Delete();

}

public ShoppingCart ShoppingCart
{

get { return _shoppingcart; }
set { _shoppingcart = value; }

}
}

}

9. The code to update the shopping cart for the user is almost complete. The final task is to add the code
needed within the presentation tier, or more specifically the ShoppingCart.aspx web form. You first need
to alter the HTML code of the shopping cart to add two different values to the DataKeyNames property of
the GridView control, add a check box column to the GridView, and add a command button that will exe-
cute the update. The two values that will be added to the DataKeyNames property are Quantity and
ShoppingCartID. Let’s look at the updated portion of the HTML code now for the ShoppingCart.aspx web
form:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="ShoppingCart.aspx.cs"
Inherits="ShoppingCart"
Title="Little Italy Vineyard | Shopping Cart" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">
<asp:GridView ID="gridviewShoppingCart" runat="server"

AutoGenerateColumns="false"
DataKeyNames="Quantity,ShoppingCartID"

OnRowDataBound="gridviewShoppingCart_RowDataBound"
Width="100%" BorderWidth="0px" CellPadding="2"
ShowHeader="false">

<Columns>
<asp:TemplateField ItemStyle-Width="16%"

ItemStyle-HorizontalAlign="center">
<ItemTemplate>

<asp:CheckBox ID="checkboxDelete" runat="server" />
</ItemTemplate>

</asp:TemplateField>

CHAPTER 17 ■ BUILDING THE SHOPPING CART 307

7249ch17.qxd 11/13/06 9:22 PM Page 307

<tr>
<td></td>
<td align="right">

<asp:Button ID="commandContinueShopping"
runat="server"
OnClick="commandContinueShopping_Click"

Text="Continue Shopping"
CssClass="button" Width="136px" />

<asp:Button ID="commandUpdate" runat="server"
OnClick="commandUpdate_Click" Text="Update"

CssClass="button" />

<asp:Button ID="commandCheckout" runat="server"
OnClick="commandCheckout_Click" Text="Check Out"
CssClass="button" />

</td>
<td></td>

</tr>
</asp:Content>

10. The HTML code is now set up so you can proceed to the C# code of the web form. You will implement
what in my opinion is the most interesting code to this point. The first task is to add the code to con-
nect to the business logic code in the form of two different methods, Update() and Delete(). Let’s look
specifically at these new methods:

private void Update(int id , int newqty)
{

ProcessUpdateShoppingCart processupdate =➥

new ProcessUpdateShoppingCart();

LittleItalyVineyard.Common.ShoppingCart➥

shoppingcart = new LittleItalyVineyard.Common.➥

ShoppingCart();
shoppingcart.Quantity = newqty;
shoppingcart.ShoppingCartID = id;
processupdate.ShoppingCart = shoppingcart;

try
{

processupdate.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART308

7249ch17.qxd 11/13/06 9:22 PM Page 308

private void Delete(int id)
{

ProcessDeleteShoppingCart processdelete =➥

new ProcessDeleteShoppingCart();

LittleItalyVineyard.Common.ShoppingCart shoppingcart =➥

new LittleItalyVineyard.Common.➥

ShoppingCart();
shoppingcart.ShoppingCartID = id;
processdelete.ShoppingCart = shoppingcart;

try
{

processdelete.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

}

11. Finally, you need to add the code for the click event of the command button that will initiate the updat-
ing of the shopping cart. The code within this event will loop through the items or rows of the GridView
control and determine whether the item is checked; if so, then the row will be deleted. Next, since the
user can update the quantity of the product within the text box, you will compare the value within the
text box to that of the originally data-bound value, and if they are different, you will call the update
method and reload the GridView by calling the LoadShoppingCart() method after you have looped
through the GridView rows. Here’s the code:

protected void commandUpdate_Click(object sender , EventArgs e)
{

foreach (GridViewRow row in gridviewShoppingCart.Rows)
{

if (row.RowType == DataControlRowType.DataRow)
{

DataKey data = gridviewShoppingCart.➥

DataKeys[row.DataItemIndex];

CheckBox check = (CheckBox) row.FindControl➥

("checkboxDelete");

if (check.Checked)
{

Delete(int.Parse(data.Values➥

["ShoppingCartID"].ToString()));
}

CHAPTER 17 ■ BUILDING THE SHOPPING CART 309

7249ch17.qxd 11/13/06 9:22 PM Page 309

TextBox textNewQuantity = (TextBox) row.FindControl➥

("textQuantity");
int integerNewQuantity = int.Parse(textNewQuantity.Text);
int integerOrigQuantity = int.Parse➥

(gridviewShoppingCart.DataKeys➥

[row.DataItemIndex].Value.ToString());

if (integerNewQuantity != integerOrigQuantity)
{

Update(int.Parse(data.➥

Values["ShoppingCartID"].➥

ToString()) , integerNewQuantity);
}

}
}

LoadShoppingCart();
}

12. Refer to the complete code:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;
using LittleItalyVineyard.Operational;

public partial class ShoppingCart : System.Web.UI.Page
{

private decimal _totalcounter;

protected void Page_Load(object sender , EventArgs e)
{

if (! IsPostBack)
{

LoadShoppingCart();
}

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART310

7249ch17.qxd 11/13/06 9:22 PM Page 310

private void LoadShoppingCart()
{

LittleItalyVineyard.Common.ShoppingCart shoppingcart =➥

new LittleItalyVineyard.Common.➥

ShoppingCart();
shoppingcart.CartGUID = CartGUID;

ProcessGetShoppingCart processgetcart =➥

new ProcessGetShoppingCart();
processgetcart.ShoppingCart = shoppingcart;

try
{

processgetcart.Invoke();
gridviewShoppingCart.DataSource = processgetcart.ResultSet;
gridviewShoppingCart.DataBind();

}
catch
{

Response.Redirect("ErrorPage.aspx");
}

}

protected void gridviewShoppingCart_RowDataBound(object sender ,➥

GridViewRowEventArgs e)
{

if (e.Row.RowType == DataControlRowType.DataRow)
{

_totalcounter += Convert.ToDecimal(DataBinder.Eval➥

(e.Row.DataItem , "TotalPrice"));
}

labelTotal.Text = string.Format("{0:c}" , _totalcounter);
}

protected void commandUpdate_Click(object sender , EventArgs e)
{

foreach (GridViewRow row in gridviewShoppingCart.Rows)
{

if (row.RowType == DataControlRowType.DataRow)
{

DataKey data = gridviewShoppingCart.DataKeys➥

[row.DataItemIndex];

CheckBox check = (CheckBox) row.FindControl➥

("checkboxDelete");

CHAPTER 17 ■ BUILDING THE SHOPPING CART 311

7249ch17.qxd 11/13/06 9:22 PM Page 311

if (check.Checked)
{

Delete(int.Parse(data.Values➥

["ShoppingCartID"].ToString()));
}

TextBox textNewQuantity = (TextBox) row.➥

FindControl("textQuantity");
int integerNewQuantity = int.Parse➥

(textNewQuantity.Text);
int integerOrigQuantity = int.Parse➥

(gridviewShoppingCart.DataKeys➥

[row.DataItemIndex].➥

Value.ToString());

if (integerNewQuantity != integerOrigQuantity)
{

Update(int.Parse(data.➥

Values["ShoppingCartID"].➥

ToString()) , integerNewQuantity);
}

}
}

LoadShoppingCart();
}

private void Update(int id , int newqty)
{

ProcessUpdateShoppingCart processupdate =➥

new ProcessUpdateShoppingCart();

LittleItalyVineyard.Common.ShoppingCart shoppingcart =➥

new LittleItalyVineyard.Common.➥

ShoppingCart();
shoppingcart.Quantity = newqty;
shoppingcart.ShoppingCartID = id;
processupdate.ShoppingCart = shoppingcart;

try
{

processupdate.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

}

CHAPTER 17 ■ BUILDING THE SHOPPING CART312

7249ch17.qxd 11/13/06 9:22 PM Page 312

private void Delete(int id)
{

ProcessDeleteShoppingCart processdelete = new➥

ProcessDeleteShoppingCart();

LittleItalyVineyard.Common.ShoppingCart shoppingcart =➥

new LittleItalyVineyard.Common.➥

ShoppingCart();
shoppingcart.ShoppingCartID = id;
processdelete.ShoppingCart = shoppingcart;

try
{

processdelete.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

}

private string CartGUID
{

get { return Utilities.GetCartGUID(); }
}

}

You now have a fully functional shopping cart that will allow the user to update the display and the data of the shop-
ping cart by changing the quantity of the product or by deleting the product added to the shopping cart altogether.

Processing Abandoned Shopping Carts
You may not be familiar with the concept of abandoned shopping carts. Therefore, I’ll define
what exactly an abandoned shopping cart is. When a user is browsing through your product
catalog, they will in most cases be adding items that they are interested in buying to their shop-
ping cart. Some will proceed and finalize their transaction by checking out and paying for the
items. However, some customers might not proceed to the end of the transaction. They might
want to wait until later that day or some other time before they actually submit their payment
information when checking out. They could have several reasons for making this decision;
perhaps they want to check with a friend to see whether they like a specific item they are pur-
chasing as a gift, or maybe they have not decided fully to make a purchase at all. In either case,
if they add products to the shopping cart and subsequently leave the application, the records
will still be contained within the ShoppingCart table in the database, which are referred to as
abandoned shopping carts.

At this point, you hope this user will return to your online store and continue with the
purchase. With that said, you want to remind them of the products that they added to the
shopping cart in the past, and therefore you will display those items from the database.

CHAPTER 17 ■ BUILDING THE SHOPPING CART 313

7249ch17.qxd 11/13/06 9:22 PM Page 313

However, undoubtedly some users will not return, and if you did nothing about this, your
ShoppingCart table would grow and grow with abandoned items. To keep up with the mainte-
nance of this, you will add a SQL Server job that runs at a given time period to delete any
abandoned shopping carts that have existed for longer than a specified window of time.

For the purposes of the case study, you will leave abandoned shopping carts in the data-
base for a period of five days. There is no correct answer as to how long these should be left in
the database, and feel free to specify an amount of time you want.

Exercise: Removing Abandoned Shopping Carts

This final exercise will be different from the prior exercises in that you will be dealing exclusively with the data-
base. You will not be adding any C# code; rather, you’ll add a SQL Server job that will be scheduled to run at
a specified time. Follow these steps:

1. Keeping with the tradition of prior exercises, you will begin by creating the stored procedure that will
be needed. This stored procedure will use a delete statement with a WHERE clause, determining
whether any shopping carts are older than five days old:

CREATE PROCEDURE ShoppingCart_DeleteAbandoned

AS

DELETE FROM ShoppingCart
WHERE
DATEDIFF(dd, DateCreated, GetDate()) > 5

2. After executing the previous script against the database, you need to add a SQL Server job. To do so,
proceed to Object Explorer in SQL Server Management Studio, expand the SQL Server Agent object,
and proceed to the Jobs node, as shown in Figure 17-5. If the SQL Server Agent is not currently run-
ning, right-click the SQL Server Agent, and choose the Start menu item command.

Figure 17-5. The SQL Server Agent

CHAPTER 17 ■ BUILDING THE SHOPPING CART314

7249ch17.qxd 11/13/06 9:22 PM Page 314

3. Right-click the Jobs node, and choose the menu item New Job. You will see the New Job dialog box, as
shown in Figure 17-6.

Figure 17-6. The New Job dialog box

4. In the Name text box, name the new job ProcessAbandonedShoppingCarts. It is not necessary to
enter a description, but you can if you want.

5. Click the Steps item in the Select a Page column in the upper-left side of the dialog box. On this page,
click the New command button, and you will see the New Job Step dialog box, as shown in
Figure 17-7.

CHAPTER 17 ■ BUILDING THE SHOPPING CART 315

7249ch17.qxd 11/13/06 9:22 PM Page 315

Figure 17-7. The New Job Step dialog box

6. In the Step Name text box, enter Remove. Keep the type of step as the default selected value of
Transact-SQL Script (T-SQL), but change the database name to LittleItalyVineyard. Then add the
name of the newly created stored procedure by entering the keyword EXECUTE followed by the name
of the stored procedure, ShoppingCart_DeleteAbandoned. The dialog box will now resemble Figure 17-8.
Click the OK button.

CHAPTER 17 ■ BUILDING THE SHOPPING CART316

7249ch17.qxd 11/13/06 9:22 PM Page 316

Figure 17-8. Completing the New Job Step dialog box

7. After clicking the OK button, you will be returned to the main New Job dialog box. Click the Schedules
page in the upper-left column, as shown in Figure 17-9.

CHAPTER 17 ■ BUILDING THE SHOPPING CART 317

7249ch17.qxd 11/13/06 9:22 PM Page 317

Figure 17-9. The Schedules page

8. On the Schedules page, you will need to click the New button to add the information required for
scheduling the process. After clicking the New button, you will see the New Job Schedule dialog box. In
this dialog box, name the schedule Delete. Set Schedule Type to Recurring, set the frequency to occur
daily, the time to 12 a.m., and finally the start date to today’s date with no end date, as shown in
Figure 17-10. Click the OK button.

CHAPTER 17 ■ BUILDING THE SHOPPING CART318

7249ch17.qxd 11/13/06 9:22 PM Page 318

Figure 17-10. New job schedule

9. You have now entered all the information necessary for the new SQL Server job. Therefore, click the OK
button in the New Job dialog box to save all the information you have added.

The newly created job will not run until the next scheduled time; however, if you want to check your work, you can
right-click the job name in the SQL Server Agent node and run the job by selecting the Start Job menu item.

Summary
Congratulations! You have completed the code for adding items to the shopping cart, updat-
ing the cart, and processing the maintenance. The e-commerce application is really starting
to come together with its functionality. Now that you have a functioning shopping cart, you
begin setting up the processing of the credit card payments and allowing your customers to
finalize their purchases.

CHAPTER 17 ■ BUILDING THE SHOPPING CART 319

7249ch17.qxd 11/13/06 9:22 PM Page 319

7249ch17.qxd 11/13/06 9:22 PM Page 320

Integrating the PayPal SDK

At this point in the book, you have successfully implemented a product catalog and a shop-
ping cart. Naturally, the next step is to finalize the functionality for processing transactions so
the user can purchase the products that they have checked out of the shopping cart. To do this,
however, you first have to establish the testing environment so that in the following chapters
you can add the code to process the credit card transactions via PayPal.

In this chapter, I will discuss the following topics so you are prepared to add the imple-
mentation for allowing a customer to pay for their merchandise:

• Introducing the PayPal software development kit (SDK) version 4.2

• Registering the PayPal Developer Central and sandbox accounts

• Creating the certificate

• Preparing the application programming interface (API) code in the PayPalManager class

■Note This chapter contains several figures showing the PayPal sandbox. This site could change at any
time, so keep this in mind when comparing the figures in this chapter to the actual PayPal sandbox website
and utilities.

Introducing the PayPal SDK
It is quite obvious even to a novice that to implement an e-commerce application, you need to
accept credit card transactions. That’s why there is a great deal of competition between com-
panies that provide credit card processing for online vendors. This competition yields affordable
transaction costs for the owners of the e-commerce applications. Some of these companies
will be easy to integrate with your system, and others might prove to be a little more difficult.

To process orders for the Little Italy Vineyards application, you’ll use PayPal for all your
credit card needs. This is for many reasons, explained in detail in the “Why PayPal?” section.

At the time of this writing, the latest version available of the PayPal SDK is version 4.2.
However, in subsequent versions, the compatibility will most likely be backward compatible
so you will be able to add the latest version with little to no difficulty.

321

C H A P T E R 1 8

■ ■ ■

7249ch18.qxd 11/13/06 9:22 PM Page 321

Why PayPal?
Using PayPal for all your credit card needs is a formidable option for many e-commerce sites.
As mentioned, one of the prominent advantages is the availability of the SDK. The SDK has
extensive documentation and samples that make it easy to implement the PayPal functionality
quickly. This is an advantage because not every payment option has this type of an extensive
documentation.

The following are several other reasons why PayPal is a great option to use:

Extensive testing environment: PayPal provides a complete testing environment that
resembles the actual PayPal account and interface 100 percent.

Thorough documentation: Included within the installation of the SDK is a complete man-
ual about how to set up the environment and implement it within your individual system.

Developer community and support: As a result of PayPal being arguably the most popular
credit card transaction system for the Web, fellow developers have implemented PayPal
into their respective applications. This has led to others helping others at http://www.
paypaldev.org/ and https://developer.paypal.com/. These are forums focused on
developing with PayPal, and they have a wealth of information that will aid your devel-
opment efforts when you encounter difficulties.

Security: PayPal continually increases its efforts and resources to maintain the highest
security possible. Taking advantage of this gives you great leverage to incorporate this
security in your own applications.

Extensive code examples: Included within the SDK are many samples for using the PayPal
API to process credit cards within your e-commerce application.

Those are the primary benefits of using PayPal for your credit card processing needs;
these are also the reasons why you are going to incorporate it in the Little Italy Vineyards
application and case study.

Next, you’ll learn about where to obtain the PayPal SDK and how to begin utilizing it.

Installing the PayPal SDK
We’ve included the PayPal SDK as an installation package with the accompanying source code
for this book for your convenience. However, you can also download the SDK from the PayPal
website (http://www.paypal.com) by navigating to the Developers section and locating the lat-
est version. In either case, you must download and install the SDK before proceeding. Installing
the SDK is fairly simple; it is a standard installation that will place the files on your local
machine. This is where you will find the manual and sample code, along with much more
information that is quite useful.

Configuring Your Developer Central Account
After successfully installing the PayPal SDK, you need to establish your test account and environ-
ment, which will allow you to thoroughly test the integration of the credit card–processing
functionality via PayPal services. You need to complete several steps to register for the account and
to configure it locally so that eventually the application can communicate with the PayPal servers.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK322

7249ch18.qxd 11/13/06 9:22 PM Page 322

In this section of the chapter, I will outline all the necessary tasks you need to complete.
The first task is to register for the Developer Central test account, which is the account within
the PayPal test environment where you will thoroughly set up your application to receive pay-
ments. The following exercise shows how to register this account.

Exercise: Registering a Developer Central Account

This exercise shows how to create a free test account for the PayPal Developer Central network and system. Follow
these steps:

1. Navigate to the PayPal Developer Central home page, which is located at https://developer.
paypal.com/. On the home page, click the Sign Up Now link, as shown in Figure 18-1.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 323

Figure 18-1. The PayPal Developer Central home page

2. Upon clicking the Sign Up Now link, you will be directed to the Sign Up page where you need to enter
your personalized information, as shown in Figure 18-2. The information required consists of your first
name, last name, e-mail address, password, security question and answer, and finally some optional
information regarding the name of your company, its website, and how you intend to use the test
account.

■Note Don’t use the same account you might have with the live PayPal system for security purposes.
However, you will need a working e-mail account so PayPal can verify the account by sending an e-mail to
that address.

7249ch18.qxd 11/13/06 9:22 PM Page 323

Figure 18-2. Entering your new account information

3. Next, agree to the User Agreement and Privacy Policy, and click the Sign Up button, as shown in
Figure 18-3.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK324

Figure 18-3. Finalizing the new account

7249ch18.qxd 11/13/06 9:22 PM Page 324

4. Provided that you have entered all the required information, the new PayPal Developer Central account
will be created, and you will see the confirmation message shown in Figure 18-4.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 325

Figure 18-4. Sign-up complete

5. The PayPal system will send a confirmation e-mail message to the address you entered. You will need
to follow the directions in that message to confirm the newly created account. So, proceed to your
e-mail account that you used to sign up for the new account, and you should receive the message
within a couple of minutes, as shown in Figure 18-5.

7249ch18.qxd 11/13/06 9:22 PM Page 325

Figure 18-5. Receiving the sign-up e-mail

6. Upon receiving the confirmation e-mail, as per the directions in the message, click the link; you will be
directed to the PayPal Developer Central account home page, which will display a message that your
new account has been successfully confirmed. The next step is to enter your credentials to log in to the
newly confirmed account and click the Log In button, as shown in Figure 18-6.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK326

Figure 18-6. Confirming the new account

7249ch18.qxd 11/13/06 9:22 PM Page 326

7. Upon successful authentication, you will be directed to the home page within the development
account, as shown in Figure 18-7.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 327

Figure 18-7. Welcome to PayPal Developer Central

Congratulations! You have completed the first step of configuring the test environment for processing the credit
card transactions with PayPal. In the next phase of the configuration, you will examine additional details of the new
test account that you just created and then create the actual sandbox account.

Creating the Sandbox Account
Continuing with configuring the PayPal test account, the next step is to create the sandbox test
account. I’ll first discuss what the sandbox account is and how it will benefit you.

As is quite apparent from the name of the account, the sandbox account is the account
PayPal provides to allow you to test the code within the application that processes credit card
transactions before the system goes live. The term sandbox refers to the fact that as a devel-
oper, you can “play around” with the account; it will behave in the same fashion as your “real”
PayPal account will.

When logging in to the main test account, you’ll see some helpful tips for using the sand-
box account. I’ll recap some of these tips before showing how to create a new sandbox account.
First, the sandbox account and environment is a direct mirror to the live PayPal account; the
only difference is that the financial transactions are actually made in the real account only.
The sandbox has no connection to a real, live PayPal account. When signing up for the sand-
box, it is not necessary to use a real e-mail address or account. The e-mail you enter will be
used only as your login name. After completing the registration process, you can also add ficti-
tious banking and credit card information so the testing will resemble the live system as best
as possible.

7249ch18.qxd 11/13/06 9:22 PM Page 327

The following exercise shows how to register for a sandbox account.

Exercise: Creating the Sandbox Account

This exercise shows how to create the PayPal sandbox account. After completing this exercise, the testing environ-
ment for PayPal will be almost complete for testing purposes. Follow these steps:

1. In the final step of the previous exercise, you verified your new account. While you are still logged in to that
account, click the Sandbox tab, which will take you to the main sandbox page, as shown in Figure 18-8.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK328

Figure 18-8. The Sandbox tab

2. On this page, you’ll see a listing of current test accounts along with a link to create a new account.
Click the Create a test account link that is located in the Test Accounts table. After clicking this link, you
will see a new browser window, as shown in Figure 18-9.

7249ch18.qxd 11/13/06 9:22 PM Page 328

Figure 18-9. Signing up for a Sandbox PayPal account

3. From the three different types of accounts, select the Business Account option and the country you live
in, and then click the Continue button. You will see the screen shown in Figure 18-10.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 329

Figure 18-10. Signing up for a sandbox PayPal account—the Getting Started page

7249ch18.qxd 11/13/06 9:22 PM Page 329

4. You now see the steps that you need to complete. The fist step is to sign up and provide the contact
information for the new account. To do so, click the Go button located under the Status column. You will
then be directed to enter your information, as shown in Figure 18-11.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK330

Figure 18-11. Business information

5. Enter the required information. Again, since this is a test account, the information can be fictitious. Finally,
when you are done entering the information, scroll to the bottom of the page, and click the Continue
button, as shown in Figure 18-12.

7249ch18.qxd 11/13/06 9:22 PM Page 330

Figure 18-12. Completing the business information

6. On the next page, you will be asked to enter the business owner information. Once again, enter the
required fields with preferably fictitious information, agree to the terms of service, and then click the
Continue button located at the end of the page, as shown in Figure 18-13.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 331

Figure 18-13. Completing the business owner information

7249ch18.qxd 11/13/06 9:22 PM Page 331

7. The next step in the process is to enter the bank information associated with the test account. Again,
this should be fictitious information. In fact, there will be randomly generated banking information already
populated in the text boxes. All that remains is to give the name of the bank and click the Continue button,
as shown in Figure 18-14.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK332

Figure 18-14. Completing the banking information

8. Upon completion, you will be returned to the page shown in Figure 18-10 that listed the steps to be
completed. Proceed to the next step to verify the e-mail by clicking the Go button under the Action col-
umn, as shown in Figure 18-15. Again, regardless of what e-mail address you used, this will simulate
verifying the account with the internal e-mail account section in the Developer Central account.

7249ch18.qxd 11/13/06 9:22 PM Page 332

Figure 18-15. Verifying the new account

9. You will then be directed to a page that is requesting to verify the e-mail address that you used. Since
this is a simulation, you can click the Continue button again, as shown in Figure 18-16.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 333

Figure 18-16. Confirming your e-mail address

7249ch18.qxd 11/13/06 9:23 PM Page 333

10. Navigate to the original page and then to the sandbox account you just registered. Refresh this page,
and you can now view that the new account that has been registered appears in the table, as shown in
Figure 18-17.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK334

Figure 18-17. The new test account

11. The remaining tasks that need to be completed are to verify the new account and the bank informa-
tion. Because this is a test account, the e-mails sent when using the sandbox account will be
simulated and will be able to be viewed from within the PayPal Developer Central account. Therefore,
click the Email tab, and you will see the messages shown in Figure 18-18.

7249ch18.qxd 11/13/06 9:23 PM Page 334

Figure 18-18. The e-mail messages

12. Click the e-mail message that has the subject “Activate Your PayPal Account,” and navigate to the link
that is provided to verify the account. You will then be asked to enter your password, and upon success-
fully logging in, you will be notified that the e-mail address is now verified, as shown in Figure 18-19.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 335

Figure 18-19. E-mail confirmed

7249ch18.qxd 11/13/06 9:23 PM Page 335

13. Continue to confirm the bank account as well by clicking the link in the e-mail message and following
any additional prompts.

This brings you to the end of the exercise. You now have a functional sandbox test account.

Creating the Test Certificate
You have almost arrived at where you can implement the code and API into your application.
To this point, you have entered all the information necessary for the test account, but you
must complete one last item. Specifically, you have to create and configure a test certificate
for use within the sandbox account, which will provide an additional layer of security. I’ll first
explain what the test certificate is.

The test certificate is linked to the sandbox account and needs to be created to use the
PayPal web services and API within the code of your application. You need to submit a user-
name and password to obtain a certificate from the PayPal servers prior to any submission of
credit card data or product data that is being tendered. This is not to say that you won’t need
a Secure Sockets Layer (SSL) certificate installed on the web server, but the certificate does
provide additional security because the account that uses the API code will not simply accept
a username and password combination. It will also require that the correct associated certifi-
cate appears in the same executing file location. In other words, you will need a test certificate
for the test environment and then a live certificate for the live PayPal services.

Before you configure the test certificate, be aware that it is not simply as easy as down-
loading a certificate and adding it to the web project. You need to perform a number of steps
to set it up successfully. Don’t worry, because I will outline all these details in the following
exercise, which shows how to create the test certificate.

Exercise: Creating the Test Certificate

This exercise shows all the intricacies involved in obtaining the test certificate to be prepared for use within the
transactions. Follow these steps:

1. If you happen to have the PayPal Development Central (https://developer.paypal.com/)
account still open in your browser from the previous exercise, it is a good bet that the session has
timed out. So, log out of the account, and reenter your credentials. When arriving at the home page,
click the Sandbox tab, and then click the Launch Sandbox button with the sandbox account selected
that you created earlier in this chapter, as shown in Figure 18-20.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK336

7249ch18.qxd 11/13/06 9:23 PM Page 336

Figure 18-20. Clicking the Launch Sandbox button

2. When you click the Launch Sandbox button, the site will launch a new browser window where you will
be again asked to log in using your sandbox test account, as shown in Figure 18-21.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 337

Figure 18-21. Logging into the sandbox account

7249ch18.qxd 11/13/06 9:23 PM Page 337

Figure 18-23. Clicking the API Access link

3. Once you have logged into the sandbox account successfully, from the home page, click the Profile tab,
as shown in Figure 18-22.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK338

Figure 18-22. Clicking the Profile tab

4. When directed to the Profile page, from the column on the left, click the API Access link, as shown in
Figure 18-23.

7249ch18.qxd 11/13/06 9:23 PM Page 338

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 339

5. After clicking the API Access link, you will see the API Set-up page with two options. Select the option
on the right, Request API Credentials, as shown in Figure 18-24.

Figure 18-24. Clicking the Request API Credentials link

6. From the Request API Credentials page, you’ll again see two options of credentials. The first option is to
use the API Signature, and the other is the API SSL client-side certificate. Select the second option, API
SSL Client-Side Certificate, and then review and agree to the terms and conditions, as shown in
Figure 18-25. Then click the Submit button.

7249ch18.qxd 11/13/06 9:23 PM Page 339

Figure 18-25. Submitting the API credentials

7. After clicking the Submit button, you will be redirected to the confirmation page. From here, you will
see the summary information for the API credentials along with the username and password, as shown
in Figure 18-26. For your convenience, copy the username and password to a text file for easy future
reference.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK340

Figure 18-26. API credential request confirmation

7249ch18.qxd 11/13/06 9:23 PM Page 340

8. Next, download the certificate by clicking the Download Certificate. You will be prompted to save the
certificate in a text file format, as shown in Figure 18-27. Save the certificate to an easy place where
you will be able to revisit it soon.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 341

Figure 18-27. Saving the test certificate

9. Upon downloading and saving the test certificate, you can now close the sandbox account browser and
return to the main PayPal Central account. You were last on the Sandbox tab, so now you need to click
the Test Certificates tab. On this page, you can view the new certificate, as shown in Figure 18-28.

7249ch18.qxd 11/13/06 9:23 PM Page 341

Figure 18-28. Viewing the test certificate

Finally, you can see the test certificate that you created and downloaded. From this point, you can log out of the
PayPal Developer Central account and focus your attention on configuring the test certificate you just downloaded.

Configuring the Test Certificate
The last task for setting up and configuring the test certificate is to take the downloaded test
certificate and convert it to P12 format, which is the format you need to implement the PayPal
APIs. A P12-formatted file is used as a certificate in IIS to authenticate a website. When you
created and downloaded the test certificate in the previous exercise, the test certificate was in
PEM format, saved as an actual text file. You need to convert this format to the P12 format for
security reasons, which will require a few different steps to complete, as described in the fol-
lowing exercise.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK342

7249ch18.qxd 11/13/06 9:23 PM Page 342

Exercise: Converting the Test Certificate

This exercise demonstrates how to convert the test certificate to the required format that will be needed to imple-
ment the API code. Follow these steps:

1. Install the OpenSSL installation package for Windows that was included within the PayPal SDK down-
load if you have not done so thus far. Next, open a command prompt and ensure that OpenSSL is in the
path along with the path of cert_key_pem.txt. Execute the following command within the command
window:

openssl pkcs12 -export -inkey cert_key_pem.txt -inkey cert_key_pem.txt –out
LittleItalyVineyards.p12

2. Upon executing this command, you will be prompted to enter a password. Enter your password, and be
sure to make note of this because you’ll use it later.

3. Finally, this command will now create a file named LittleItalyVineyards.p12. This newly created
file is your encrypted API certificate.

You will revisit the certificate file in the next section of this chapter.

Integrating the PayPal APIs
You are getting close to the end of the chapter and thus to the explanation of how to set up
and configure the testing environment to eventually accept PayPal credit card transactions.
So, I need to address one final step in this chapter. This final step is to properly implement the
test certificate within your source code solution and then add the API references where you
can pick up the development to process the payments for your products that the customers
will purchase.

This process will not be as complex and detail oriented as the previous exercises; to com-
plete the tasks in this chapter, you will add the text certificate to the source code base or Visual
Studio 2005 solution. At the same time, you will not have a complete integration guide using
the PayPal APIs but merely be prepared for the upcoming chapter that will show the thorough
details for adding the code to accept and process a credit card payment.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 343

7249ch18.qxd 11/13/06 9:23 PM Page 343

Exercise: Incorporating the Certificate

This exercise shows how to add the test certificate to the web project to prepare the groundwork for adding the
actual PayPal API code not only for the sandbox environment but also eventually the live production environment.
Follow these steps:

1. Return to the Visual Studio 2005 solution, and relaunch it if you have closed out of the application.
Then return to the web project. Right-click the project, and add a new folder named Certs, as
shown in Figure 18-29.

Figure 18-29. Adding the Certs folder

2. Now that you have added the Certs folder to the web project, you need to add the test certificate you
created in the previous exercise to this directory. To do so, right-click the Certs directory, choose to add
a new item, browse to the file location where the test certificate was saved, and add this P12 file to the
directory, as shown in Figure 18-30.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK344

7249ch18.qxd 11/13/06 9:23 PM Page 344

Figure 18-30. Adding the certificate to the Certs folder

At this point, you have the certificate added to the web project where you can use it to authenticate the implemen-
tation of the API code. As mentioned in this chapter, you are not going to fully implement the API code at this point.
Instead, you’re preparing it for the following chapter and exercises where you will do just that.

Summary
In this chapter, you set up and configured the PayPal account for testing purposes. To recap,
you established a main PayPal Development Central account along with a sandbox account
and created and added a test certificate to your source code baseline. All of these exercises
were necessary to establish the testing environment to provide seamless integration to the
live production credit card transaction account that you will eventually establish. In the next
chapter, you will learn how to allow a customer to check out of the shopping cart that they
created and to utilize the PayPal services you have implemented to accept payment.

CHAPTER 18 ■ INTEGRATING THE PAYPAL SDK 345

7249ch18.qxd 11/13/06 9:23 PM Page 345

7249ch18.qxd 11/13/06 9:23 PM Page 346

Implementing the Checkout
Process

In the previous chapter, you finished setting up and implementing the test account, so it is
now time to address the functionality that allows the customer to check out of the shopping
cart. In this chapter, I will address only the initial part of the checkout process; specifically,
you will implement everything up to when users enter their payment information. Chapter 20
will show you how to finalize the checkout process by dealing with the payment information
and submitting it to the credit card–processing service for the official payment of the goods.

To summarize, I will address the following topics and implementations in this chapter:

• Checking out of the shopping cart

• Creating a new user account

• Logging into an existing account

Checking Out of the Shopping Cart
Once the customer has added the items to the shopping cart that they are interested in buy-
ing, they need to finalize the transaction. This transaction will require several different pieces
of functionality. As mentioned earlier, in this chapter, I will address only the segments of the
checkout process that lead up to entering the payment information and processing the pay-
ment. So, I will cover what happens after the user adds products to their shopping carts.

With that said, after deciding to check out the products they have selected, the user will
either be a return customer or be a new customer. More specifically, if they don’t have an
existing account in the system, they will need to create an account. If the user needs to create
a new account, then this process will begin by allowing the user to register a new account.
However, since you are picking up where you last left off at the shopping cart, you need to first
address how the user will be able to navigate from the shopping cart to the login/register process.
The following exercise will show how to accomplish this feat.

347

C H A P T E R 1 9

■ ■ ■

7249ch19.qxd 11/13/06 9:23 PM Page 347

Exercise: Implementing the Login

This exercise consists of only a few steps but at the same time demonstrates the steps necessary to begin imple-
menting the checkout functionality. Follow these steps:

1. Revisit your Visual Studio 2005 solution, and proceed to the web project within the solution. Navigate
to the ShoppingCart.aspx web form, and add a command button named commandCheckout at the bot-
tom of the GridView control. Set the Text property to Check Out. Then double-click the button so it
takes you to code view. Add the following code in the click event handler:

protected void commandCheckout_Click(object sender , EventArgs e)
{

Response.Cookies["ReturnURL"].Value = "CheckOut.aspx";
Response.Redirect("Login.aspx”);

}

How It Works

The code you added is quite simple. Since the user needs to eventually navigate to the checkout web
page, they will either need to log in or create a new account, and you have to take this into account.
Therefore, you are creating a nonpersistent cookie named ReturnURL with the value CheckOut.aspx.
Finally, you direct the user to the Login.aspx page by using the Response.Redirect method.

2. At this point, you have no web form named Login.aspx; therefore, add a new web form to the web proj-
ect, and name it Login.aspx. In addition, select the associated master page, and then add the
following HTML code:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="Login.aspx.cs"
Inherits="Login" Title="Little Italy Vineyard | Customer Login" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<table border="0" cellpadding="3" cellspacing="0" style="width: 360px">
<tr>

<td></td>
</tr>
<tr>

<td></td>
<td>Username:</td><td>

<asp:TextBox ID="textUsername"
runat="server" CssClass="textField">
</asp:TextBox>

<asp:RequiredFieldValidator ID="requiredUsername"
runat="server" ErrorMessage="Username required."

ControlToValidate="textUsername" Display="Dynamic"

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS348

7249ch19.qxd 11/13/06 9:23 PM Page 348

EnableClientScript="False" Width="152px">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td></td>
<td>Password:</td>

<td>
<asp:TextBox ID="textPassword"
runat="server" TextMode="Password"
CssClass="textField"></asp:TextBox>

<asp:RequiredFieldValidator ID="requiredPassword"
runat="server" ErrorMessage="Password required."
ControlToValidate="textPassword"
Display="Dynamic" Width="152px"
EnableClientScript="False">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td colspan="2"></td>
<td><asp:Button ID="commandLogin" runat="server" Text="Login"

OnClick="commandLogin_Click" CssClass="button" /></td>
</tr>
<tr>
<td colspan="2"></td>
<td><asp:Label ID="labelMessage" runat="server"></asp:Label></td>

</tr>
<tr>

<td colspan="2"></td>
<td><asp:HyperLink ID="hyperlinkNewAccount" runat="server"
NavigateUrl="Register.aspx" Width="144px">
Register New Account</asp:HyperLink></td>

</tr>
<tr>

<td colspan="2"></td>
<td></td>

</tr>
</table>

</asp:Content>

That’s all there is to it. This was a brief exercise, but you now have the initial implementation of the login page. You
have added the controls that you will revisit later in the chapter when you allow an existing user to log in to their
account. However, first you need to allow the users who do not have accounts to click a hyperlink that will navi-
gate them to the Register.aspx web page where they can enter their information.

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 349

7249ch19.qxd 11/13/06 9:23 PM Page 349

Creating a New User Account
You need to allow a new customer to register an account if they don’t already have one. This
process will allow the user to enter their information and establish a username and password.
To implement this functionality, you need to add quite a bit of code to your existing code base.
Therefore, the following exercise will walk you through all the necessary tasks.

Exercise: Creating a New Account

In this exercise, you will create a stored procedure and add the necessary code to allow the user to enter their
information. Then you will save that information in the database so the user can eventually proceed to the final
checkout process. Follow these steps:

1. You’ll first create the stored procedure that will insert the necessary data. This stored procedure will be
different from the previous ones so far in the sense that the information will span three tables:
EndUser, Address, and ContactInformation. Therefore, you need to utilize transactions. Here’s the stored
procedure script:

CREATE PROCEDURE EndUser_Insert

@FirstName nvarchar(50),
@LastName nvarchar(50),
@AddressLine nvarchar(50),
@AddressLine2 nvarchar(50),
@City nvarchar(50),
@State nvarchar(50),
@PostalCode nvarchar(50),
@Phone nvarchar(50),
@Phone2 nvarchar(50),
@Fax nvarchar(50),
@Email nvarchar(50),
@EndUserTypeID int,
@Password nvarchar(50),
@IsSubscribed bit

AS

--Start the transaction
BEGIN TRANSACTION

DECLARE @AddressID int
DECLARE @ContactInformationID int

INSERT INTO Address
(AddressLine,
AddressLine2,
City,

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS350

7249ch19.qxd 11/13/06 9:23 PM Page 350

State,
PostalCode)
VALUES
(@AddressLine,
@AddressLine2,
@City,
@State,
@PostalCode)

SET @AddressID = @@IDENTITY

-- Roll back the transaction if there are any errors
IF @@ERROR <> 0
BEGIN
-- Roll back the transaction
ROLLBACK

-- Raise an error and return
RAISERROR ('Error INSERT INTO Address.', 16, 1)
RETURN
END

INSERT INTO ContactInformation
(Phone,
Phone2,
Fax,
Email)
VALUES
(@Phone,
@Phone2,
@Fax,
@Email)

SET @ContactInformationID = @@IDENTITY

-- Roll back the transaction if there are any errors
IF @@ERROR <> 0
BEGIN
-- Roll back the transaction
ROLLBACK

-- Raise an error and return
RAISERROR ('Error INSERT INTO ContactInformation', 16, 1)
RETURN
END

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 351

7249ch19.qxd 11/13/06 9:23 PM Page 351

-- Next Step
INSERT INTO EndUser
(EndUserTypeID,
FirstName,
LastName,
AddressID,
ContactInformationID,
Password,
IsSubscribed)
VALUES
(@EndUserTypeID,
@FirstName,
@LastName,
@AddressID,
@ContactInformationID,
@Password,
@IsSubscribed)

SELECT @@IDENTITY

-- Roll back the transaction if there are any errors
IF @@ERROR <> 0
BEGIN
-- Roll back the transaction
ROLLBACK

-- Raise an error and return
RAISERROR ('Error INSERT INTO EndUser', 16, 1)
RETURN
END

COMMIT

How It Works

The stored procedure utilizes transactions to first insert the data into the Address table and then
retrieve the AddressID value that was just created by the @@IDENTITY variable. In a similar fashion,
the ContactInformation table has its respective information inserted and then ends the transaction by
taking the two unique IDs from the Address and ContactInformation tables, inserting the remaining
information in the EndUser table, and returning the newly created EndUserID value that was created.

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS352

7249ch19.qxd 11/13/06 9:23 PM Page 352

2. You now have the stored procedure complete and can proceed to the data access layer of the code. As
in the prior exercises, you need to add the name of the stored procedure, EndUser_Insert, to the Name
enumeration within the StoredProcedure class. Upon completing that task, proceed to the Insert folder
within the LittleItalyVineyard.DataAccess class library, and add a new class named EndUserInsertData.
Then add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Insert
{

public class EndUserInsertData : DataAccessBase
{

private EndUser _enduser;
private EndUserInsertDataParameters➥

_enduserinsertdataparameters;

public EndUserInsertData()
{

StoredProcedureName = StoredProcedure.Name.➥

EndUser_Insert.ToString();
}

public void Add()
{

_enduserinsertdataparameters =➥

new EndUserInsertDataParameters(EndUser);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
object id = dbhelper.RunScalar➥

(base.ConnectionString ,
_enduserinsertdataparameters.Parameters);

EndUser.EndUserID = int.Parse(id.ToString());
}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}
}

public class EndUserInsertDataParameters

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 353

7249ch19.qxd 11/13/06 9:23 PM Page 353

{
private EndUser _enduser;
private SqlParameter[] _parameters;

public EndUserInsertDataParameters(EndUser enduser)
{

EndUser = enduser;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{
new SqlParameter("@FirstName" , EndUser.FirstName) ,
new SqlParameter("@LastName" , EndUser.LastName) ,
new SqlParameter("@AddressLine", EndUser.Address.➥

AddressLine) ,
new SqlParameter("@AddressLine2" , EndUser.Address.➥

AddressLine2) ,
new SqlParameter("@City" , EndUser.Address.City) ,
new SqlParameter("@State" , EndUser.Address.State) ,
new SqlParameter("@PostalCode" , EndUser.Address.➥

PostalCode) ,
new SqlParameter("@Phone" , EndUser.ContactInformation.➥

Phone) ,
new SqlParameter("@Phone2" , EndUser.ContactInformation.➥

Phone2) ,
new SqlParameter("@Fax" , EndUser.ContactInformation.➥

Fax) ,
new SqlParameter("@Email" , EndUser.ContactInformation.➥

Email) ,
new SqlParameter("@EndUserTypeID" , EndUser.➥

EndUserTypeID) ,
new SqlParameter("@Password" , EndUser.Password) ,
new SqlParameter("@IsSubscribed" , EndUser.IsSubscribed)
};

Parameters = parameters;
}

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS354

7249ch19.qxd 11/13/06 9:23 PM Page 354

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

How It Works

You have added two separate classes in the data access layer of the architecture. These classes are
similar to the others within the data access layer in that there is a main class and a parameters class.
However, notice that you needed to first go to the common class of EndUser and add two fields and
properties. These additions were the Address and ContactInformation classes as properties; you also
instantiated them within the constructor. The following is the sample of what was added to the
EndUser class within the LittleItalyVineyard.Common library project:

private Address _address;
private ContactInformation _contactinformation;

public EndUser()
{

_address = new Address();
_contactinformation = new ContactInformation();

}

public Address Address
{

get { return _address; }
set { _address = value; }

}

public ContactInformation ContactInformation
{

get { return _contactinformation; }
set { _contactinformation = value; }

}

This addition to the EndUser common class was needed as a result of the information being inserted
across multiple tables in the database. If you want to keep the documentation of the class diagrams
up-to-date, do not forget to make these adjustments there as well.

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 355

7249ch19.qxd 11/13/06 9:23 PM Page 355

3. You are now off to the business logic layer of the code. Add a new class to the
LittleItalyVineyard.BusinessLogic class library project named ProcessAddEndUser. You will construct
this class similar to the others within this section of the architecture. Therefore, add the following code
to the newly added class:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Insert;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessAddEndUser : IBusinessLogic
{

private EndUser _enduser;

public ProcessAddEndUser()
{

}

public void Invoke()
{

EndUserInsertData enduserdata = new EndUserInsertData();
enduserdata.EndUser = this.EndUser;
enduserdata.Add();
this.EndUser.EndUserID = enduserdata.EndUser.EndUserID;

}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}
}

}

How It Works

This code is no different from the other classes you have created within the business logic layer. It
adheres to the IBusinessLogic interface and uses the code created in the previous steps of this exercise.

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS356

7249ch19.qxd 11/13/06 9:23 PM Page 356

4. Now you’ll move on to the final tier of the architecture that you will need to incorporate, the presentation
layer. In the first exercise in this chapter, you created a link that will navigate the user to the Register.aspx
web page, which as of the moment does not exist. So now you’ll add a new web form to the web proj-
ect in the solution named Register.aspx and associate it with the master page to which the other web
forms adhere. In the Source section of the web form, add the following HTML code:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="Register.aspx.cs"
Inherits="Register" Title="Little Italy Vineyard | Registration" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<table border="0" cellpadding="2" cellspacing="0" style="width: 432px">
<tr>

<td style="width: 23px">
<img src="images/spacer.gif" width="1"
height="8" /></td>

</tr>
<tr>

<td style="width: 23px"><img src="images/spacer.gif" width="50"
height="1" /></td>

<td style="width: 167px">Firstname:</td>
<td>
<asp:TextBox ID="textFirstname" runat="server"
Width="176px" CssClass="textField">
</asp:TextBox>

<asp:RequiredFieldValidator ID="requiredFirstname"
runat="server" ControlToValidate="textFirstname"

Display="Dynamic" EnableClientScript="False"
ErrorMessage="Firstname required."

Width="152px"></asp:RequiredFieldValidator></td>
</tr>
<tr>

<td style="width: 23px"></td>
<td style="width: 167px">Lastname:</td>

<td>
<asp:TextBox ID="textLastname" runat="server"
Width="176px" CssClass="textField">
</asp:TextBox>

<asp:RequiredFieldValidator ID="requiredLastname"
runat="server" ControlToValidate="textLastname"
Display="Dynamic" EnableClientScript="False"
ErrorMessage="Lastname required."

Width="152px"></asp:RequiredFieldValidator></td>
</tr>
<tr>

<td style="width: 23px"></td>
<td style="width: 167px">Address:</td>

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 357

7249ch19.qxd 11/13/06 9:23 PM Page 357

<td>
<asp:TextBox ID="textAddress" runat="server"
Width="176px" CssClass="textField">
</asp:TextBox>

<asp:RequiredFieldValidator ID="requiredAddress" runat="server"
ControlToValidate="textAddress"
Display="Dynamic" EnableClientScript="False"
ErrorMessage="Address required."

Width="152px"></asp:RequiredFieldValidator></td>
</tr>
<tr>

<td style="width: 23px"></td>
<td style="width: 167px">Address 2:</td>

<td>
<asp:TextBox ID="textAddress2" runat="server"
Width="176px" CssClass="textField">
</asp:TextBox></td>
</tr>
<tr>
<td style="width: 23px"></td>
<td style="width: 167px">City:</td>
<td><asp:TextBox ID="textCity" runat="server" Width="176px"

CssClass="textField"></asp:TextBox>

<asp:RequiredFieldValidator ID="requiredCity" runat="server"
ControlToValidate="textCity"
Display="Dynamic" EnableClientScript="False"
ErrorMessage="City required."

Width="152px"></asp:RequiredFieldValidator></td>
</tr>
<tr>

<td style="width: 23px"></td>
<td style="width: 167px">State:</td>

<td>
<asp:TextBox ID="textState" runat="server"
Width="176px" CssClass="textField">
</asp:TextBox>

<asp:RequiredFieldValidator ID="requiredState" runat="server"
ControlToValidate="textState"
Display="Dynamic" EnableClientScript="False"
ErrorMessage="State required."

Width="152px"></asp:RequiredFieldValidator></td>
</tr>
<tr>

<td style="width: 23px"></td>
<td style="width: 167px">Postal Code:</td>

<td>
<asp:TextBox ID="textPostalCode" runat="server"

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS358

7249ch19.qxd 11/13/06 9:23 PM Page 358

Width="176px" CssClass="textField">
</asp:TextBox>

<asp:RequiredFieldValidator ID="requiredPostalCode"
runat="server" ControlToValidate="textPostalCode"

Display="Dynamic" EnableClientScript="False"
ErrorMessage="Postal Code required."
Width="152px"></asp:RequiredFieldValidator></td>

</tr>
<tr>

<td style="width: 23px"></td>
<td style="width: 167px">Password:</td>

<td><asp:TextBox ID="textPassword" runat="server"
TextMode="Password" Width="176px" CssClass="textField">
</asp:TextBox>

<asp:RequiredFieldValidator ID="requiredPassword"
runat="server" ControlToValidate="textPassword"
Display="Dynamic" ErrorMessage="Password required."
Width="152px" EnableClientScript="False">
</asp:RequiredFieldValidator>
<asp:CompareValidator ID="comparePasswords" runat="server"
Display="Dynamic" EnableClientScript="False"
ErrorMessage="The passwords entered do not match"
ControlToCompare="textPassword"
ControlToValidate="textConfirmPassword" Width="240px">
</asp:CompareValidator></td>

</tr>
<tr>

<td style="width: 23px"></td>
<td style="width: 167px">Confirm Password:</td>
<td><asp:TextBox ID="textConfirmPassword" runat="server"
TextMode="Password" Width="176px" CssClass="textField">
</asp:TextBox>

<asp:RequiredFieldValidator ID="requiredConfirmPassword"
runat="server" ControlToValidate="textConfirmPassword"
Display="Dynamic" EnableClientScript="False"
ErrorMessage="Confirm password required."
Width="176px"></asp:RequiredFieldValidator></td>
</tr>
<tr>
<td style="width: 23px"></td>
<td style="width: 167px">Email:</td>
<td><asp:TextBox ID="textEmail" runat="server"
TextMode="singleLine" Width="176px" CssClass="textField">
</asp:TextBox>

<asp:RequiredFieldValidator ID="requiredEmail" runat="server"
ControlToValidate="textEmail"
Display="Dynamic" EnableClientScript="False"

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 359

7249ch19.qxd 11/13/06 9:23 PM Page 359

ErrorMessage="Email required."
Width="152px"></asp:RequiredFieldValidator></td>

</tr>
<tr>

<td style="width: 23px"></td>
<td style="width: 167px">Phone:</td>

<td>
<asp:TextBox ID="textPhone" runat="server"
Width="176px" CssClass="textField">
</asp:TextBox></td>

</tr>
<tr>

<td style="width: 23px"></td>
<td style="width: 167px">Phone 2:</td>

<td>
<asp:TextBox ID="textPhone2" runat="server"
Width="176px" CssClass="textField">
</asp:TextBox></td>

</tr>
<tr>

<td style="width: 23px"></td>
<td style="width: 167px">Fax:</td>

<td>
<asp:TextBox ID="textFax" runat="server"
Width="176px" CssClass="textField">
</asp:TextBox></td>

</tr>
<tr>

<td style="width: 23px"></td>
<td style="width: 167px">Subscribe to Newsletter:</td>
<td><asp:CheckBox ID="checkboxNewsletter" runat="server"

Width="176px" CssClass="textField" /></td>
</tr>
<tr>

<td colspan="2"></td>
<td><asp:Button ID="commandRegister" runat="server"

Text="Register Account" OnClick="commandRegister_Click"
CssClass="button" /></td>

</tr>
</table>

</asp:Content>

How It Works

You added quite a bit of HTML code in this step, so I’ll explain some of the details of what it contains.
Essentially, the web form contains text boxes for all the information that is asked of the user and
required to populate a new user within your system. You also added a number of required field valida-
tor controls and associated them with the fields that are necessary when adding a new user account.

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS360

7249ch19.qxd 11/13/06 9:23 PM Page 360

A required field validator is a control that is provided within ASP.NET that offers an easy way of ensur-
ing that a user enters a value within the field where you require information. Finally, you added another
validator that is incorporated to verify that the password entered is in fact the same as what’s entered
in the field that asks to confirm the user’s password.

5. Now that you have the HTML code and server controls set up on the Register.aspx web form, you can
proceed to the code portion. Within the code version, you need to add several items. Add the following
code, and I’ll then explain the details of what you have incorporated:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;

public partial class Register : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

textFirstname.Focus();
}

protected void commandRegister_Click(object sender , EventArgs e)
{

EndUser enduser = new EndUser();
ProcessAddEndUser processuser = new ProcessAddEndUser();

if (IsValid)
{

enduser.EndUserTypeID = (int) Enums.EndUserType.CUSTOMER;
enduser.FirstName = textFirstname.Text;
enduser.LastName = textLastname.Text;
enduser.Address.AddressLine = textAddress.Text;
enduser.Address.AddressLine2 = textAddress2.Text;
enduser.Address.City = textCity.Text;
enduser.Address.State = textState.Text;
enduser.Address.PostalCode = textPostalCode.Text;
enduser.Password = textPassword.Text;
enduser.ContactInformation.Email = textEmail.Text;
enduser.ContactInformation.Phone = textPhone.Text;

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 361

7249ch19.qxd 11/13/06 9:23 PM Page 361

enduser.ContactInformation.Phone2 = textPhone2.Text;
enduser.ContactInformation.Fax = textFax.Text;
enduser.IsSubscribed = checkboxNewsletter.Checked;

processuser.EndUser = enduser;

try
{

processuser.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

if (Request.Cookies["ReturnURL"].Value != null)
{

Response.Redirect(Request.Cookies["ReturnURL"]➥

.Value);
}
else
{

Response.Redirect("Login.aspx");
}

}
}

}

How It Works

How does this work? That’s an excellent question; you have been bombarded with a great deal of code
up to this point, but everything will become quite clear in a moment. In the previous code that you
included in the Register.aspx web form, you did the following: you first added a click event to the com-
mand button, and in the click event you instantiated new EndUser and ProcessAddEndUser classes
from the common object and business logic layers, respectively. After doing this, you started to popu-
late the ProcessAddEndUser EndUser property with that of the text boxes to pass this information to
the business logic layer and ultimately to the data access layer and database to insert the necessary
information. Note, however, that this occurs only if the IsValid page property is true as a result of all the
validation controls being satisfied.

6. Everything is set up and implemented to allow the new user to add their information and create a new
account. However, you need to address a few remaining items so that you can redirect the user to
where they originally wanted to go—the checkout. With that being said, I’ll now introduce a concept:
using a base page from which eventually all the web forms will inherit. Within the base page, a number
of items will use session variables to store and maintain state across the application. Therefore, add
a class file to the web project named BasePage. You will be prompted that you are adding a code file to
the web project, and you’ll be asked whether you want to add it to the App_Code directory; you can
respond by clicking Yes. Add the following code to the new class file:

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS362

7249ch19.qxd 11/13/06 9:23 PM Page 362

using LittleItalyVineyard.Common;

public class BasePage : System.Web.UI.Page
{

internal const string KEY_CURRENTUSER = "Current Logged In User";

public EndUser CurrentEndUser
{

get
{

try
{

return (EndUser) (Session[KEY_CURRENTUSER]);
}
catch
{

return (null); // for design time
}

}

set
{

if (value == null)
{

Session.Remove(KEY_CURRENTUSER);
}
else
{

Session[KEY_CURRENTUSER] = value;
}

}
}

}

How It Works

The base page is quite simple. To start, the class inherits from the System.Web.UI.Page class, which is
what all web forms inherit from by default. Next you added the LittleItalyVineyard.Common namespace
so that you can use the common objects within the base page. Then finally, you added a constant string
that will be used as the referring session item that is then either accessed or set within the CurrentEndUser
property that stores the EndUser common class in the session variable.

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 363

7249ch19.qxd 11/13/06 9:23 PM Page 363

7. Now that you have created and implemented the base page, you need to have your web forms inherit
from the BasePage class. Doing so is quite simple; you just need to change what Register.aspx inherits
from to that of the base page. Finally, you will set the newly created property within the base page of
the current user to what was just created and then redirect the user to their original destination:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;

public partial class Register : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

textFirstname.Focus();
}

protected void commandRegister_Click(object sender , EventArgs e)
{

EndUser enduser = new EndUser();
ProcessAddEndUser processuser = new ProcessAddEndUser();

if (IsValid)
{

enduser.EndUserTypeID = (int) Enums.EndUserType➥

.CUSTOMER;
enduser.FirstName = textFirstname.Text;
enduser.LastName = textLastname.Text;
enduser.Address.AddressLine = textAddress.Text;
enduser.Address.AddressLine2 = textAddress2.Text;
enduser.Address.City = textCity.Text;
enduser.Address.State = textState.Text;
enduser.Address.PostalCode = textPostalCode.Text;
enduser.Password = textPassword.Text;
enduser.ContactInformation.Email = textEmail.Text;
enduser.ContactInformation.Phone = textPhone.Text;

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS364

7249ch19.qxd 11/13/06 9:23 PM Page 364

enduser.ContactInformation.Phone2 = textPhone2.Text;
enduser.ContactInformation.Fax = textFax.Text;
enduser.IsSubscribed = checkboxNewsletter.Checked;

processuser.EndUser = enduser;

try
{

processuser.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

CurrentEndUser = processuser.EndUser;

if (Request.Cookies["ReturnURL"].Value != null)
{

Response.Redirect(Request.Cookies["ReturnURL"]➥

.Value);
}
else
{

Response.Redirect("Login.aspx");
}

}
}

}

How It Works

Within the altered code, you inherited from the base page that was newly created, and upon a suc-
cessful completion of the user creating a new account, you set the populated EndUser class to the
CurrentEndUser property in the BasePage class. Finally, you detect whether the user had an original
destination. In other words, did they sign up for a new account without checking out first, or were they
in the process of checking out and needed to create an account? You accomplish this by checking
whether the cookie, ReturnURL, is present. If the cookie is not null, the user is then redirected to that
original location. If the cookie is null or not present, the user is simply redirected to the login page,
Login.aspx.

At long last, you have finished the implementation to allow a new user to create an account. Now that users are
able to create accounts, you can proceed to implementing the functionality to allow an existing user to log in to
their account and eventually check their items out of the shopping cart.

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 365

7249ch19.qxd 11/13/06 9:23 PM Page 365

Logging In
You now need to implement the functionality that allows a user to log in—this can be either
a new user who has recently created an account or a return customer who has had an account
for an extended amount of time. In either case, for the customer to proceed to the checkout
process and eventually enter their billing information, you will add the login feature. The
following exercise shows you how do to this.

Exercise: Implementing the Login Functionality

This exercise shows how to allow the user to log in to their account and either proceed to the final checkout portion
of the process or examine any history within their account. Follow these steps:

1. You will once again begin with creating the stored procedure for accessing the information for the user
account. Execute the following stored procedure script:

CREATE PROCEDURE EndUserLogin_Select

@Email nvarchar(50),
@Password nvarchar(50)

AS

SELECT EndUserID,
EndUserTypeID,
FirstName,
LastName,
EndUser.AddressID,
EndUser.ContactInformationID,
Password,
IsSubscribed,
Phone,
Phone2,
Fax,
Email
FROM EndUser
INNER JOIN ContactInformation
ON ContactInformation.ContactInformationID = enduser.ContactInformationID
WHERE Email = @Email
AND Password = @Password
AND EndUserTypeID = 1

How It Works

The stored procedure script accepts two parameters: the e-mail and the password that will be queried
from the EndUser table as well as the inner joined ContactInformation table. Finally, the WHERE clause
uses the e-mail, password, and EndUserTypeID that is set to 1, which represents a basic customer and
not an administrator.

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS366

7249ch19.qxd 11/13/06 9:23 PM Page 366

2. Moving along to the data access tier, first add the name of the stored procedure, EndUserLogin_Select,
to the enumeration within the StoredProcedure class. From there, create a new class in the Select portion
of the namespace named EndUserLoginSelectData along with its EndUserLoginSelectDataParameters
class. The code is as follows:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class EndUserLoginSelectData : DataAccessBase
{

private EndUser _enduser;

public EndUserLoginSelectData()
{

StoredProcedureName = StoredProcedure.Name.➥

EndUserLogin_Select.ToString();
}

public DataSet Get()
{

DataSet ds;

EndUserLoginSelectDataParameters➥

_enduserselectdataparameters =➥

new EndUserLoginSelectDataParameters(EndUser);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString ,

_enduserselectdataparameters.Parameters);

return ds;
}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}
}

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 367

7249ch19.qxd 11/13/06 9:23 PM Page 367

public class EndUserLoginSelectDataParameters
{

private EndUser _enduser;
private SqlParameter[] _parameters;

public EndUserLoginSelectDataParameters(EndUser enduser)
{

EndUser = enduser;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@Email" , ➥

EndUser.ContactInformation➥

.Email) ,
new SqlParameter("@Password" , EndUser.Password)

};

Parameters = parameters;
}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

How It Works

The data access code is similar to the other data access classes you have implemented. A DataSet is
returned from the query that uses the stored procedure while specifying the Email and Password
parameters that are passed to the stored procedure.

3. Moving along to the business logic layer now, you will keep the similar pattern in that you will add
a new class named ProcessEndUserLogin, which will implement the IBusinessLogic interface and sub-
sequently call upon the data access code. The code is as follows:

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS368

7249ch19.qxd 11/13/06 9:23 PM Page 368

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessEndUserLogin : IBusinessLogic
{

private EndUser _enduser;
private DataSet _resultset;
private bool _isauthenticated;

public ProcessEndUserLogin()
{

}

public void Invoke()
{

EndUserLoginSelectData enduserlogin = ➥

new EndUserLoginSelectData();
enduserlogin.EndUser = this.EndUser;
ResultSet = enduserlogin.Get();

if (ResultSet.Tables[0].Rows.Count != 0)
{

IsAuthenticated = true;

EndUser.EndUserID =➥

int.Parse(ResultSet.Tables[0]➥

.Rows[0]["EndUserID"].ToString());
EndUser.EndUserTypeID = ➥

int.Parse(ResultSet.Tables[0]➥

.Rows[0]["EndUserTypeID"].ToString());
EndUser.FirstName =➥

ResultSet.Tables[0].Rows[0]➥

["Firstname"].ToString();
EndUser.LastName =➥

ResultSet.Tables[0].Rows[0]➥

["LastName"].ToString();
EndUser.AddressID ➥

= int.Parse(ResultSet.Tables[0].➥

Rows[0]["AddressID"].ToString());

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 369

7249ch19.qxd 11/13/06 9:23 PM Page 369

EndUser.ContactInformationID =➥

int.Parse(ResultSet.Tables[0].➥

Rows[0]["ContactInformationID"].ToString());
EndUser.Password = ResultSet.Tables[0].Rows[0]➥

["Password"].ToString();

// Obtain the Address information.
ProcessGetAddress getaddress =➥

new ProcessGetAddress();
getaddress.Address.AddressID = EndUser.AddressID;

getaddress.Invoke();
EndUser.Address = getaddress.Address;

// Obtain the ContactInformation information.
ProcessGetContactInformation getcontactinfo = ➥

new ProcessGetContactInformation();
getcontactinfo.➥

ContactInformation.ContactInformationID➥

= EndUser.ContactInformationID;

getcontactinfo.Invoke();

EndUser.ContactInformation = getcontactinfo.➥

ContactInformation;
}
else
{

EndUser = null;
IsAuthenticated = false;

}
}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}

public bool IsAuthenticated
{

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS370

7249ch19.qxd 11/13/06 9:23 PM Page 370

get { return _isauthenticated; }
set { _isauthenticated = value; }

}
}

}

How It Works

Everything within the code is similar to previous business logic classes except this code has an addi-
tional step. This additional step is that you will examine the returning DataSet within the Password field
and compare that to the password text that was entered by the user. If they match, the Invoke method
sets the IsAuthenticated property to true; otherwise, it is false, meaning the passwords do not match,
and thus the user cannot proceed.

4. For the final step, you will work with the Login.aspx web form. You have already added the HTML code
and controls to this page; however, you now need to add the C# code that will initiate the login process.
Therefore, within the click event of the login command button, add the code to commence the process, as
follows:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;

public partial class Login : BasePage
{

protected void Page_Load(object sender , EventArgs e)
{

textUsername.Focus();
}

protected void commandLogin_Click(object sender , EventArgs e)
{

if (IsValid)
{

EndUser enduser = new EndUser();
ProcessEndUserLogin processlogin = ➥

new ProcessEndUserLogin();

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 371

7249ch19.qxd 11/13/06 9:23 PM Page 371

enduser.ContactInformation.Email = textUsername.Text;
enduser.Password = textPassword.Text;
processlogin.EndUser = enduser;

try
{

processlogin.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

if (processlogin.IsAuthenticated)
{

base.CurrentEndUser = processlogin.EndUser;

if (Request.Cookies["ReturnURL"] != null)
{

Response.Redirect(Request.Cookies➥

["ReturnURL"].Value);
}
else
{

// TODO: Implement later.
}

}
else
{

labelMessage.Text = "Invalid login!";
}

}
}

}

How It Works

Again, the code is similar to that of the other presentation tier code and web forms. First, you set the
focus in the page load event to that of the textUsename text box. Then, you check whether the execu-
tion of the button click event has valid data and, if so, call the business logic code and the EndUser
common class to pass into the ProcessEndUserLogin class in the business logic tier. Finally, if the
Invoke method from the ProcessEndUserLogin class returned value is true, you redirect the user to the
original page by checking the cookie. If there is no cookie, you will return the user to a page that you
will implement in Chapter 22, thus noted by the TODO commented item. If the Invoke method returns
a false value, you will alert the user by setting the Text property of the labelMessage to explain that the
login is invalid.

With this final implementation of code, you are at the end of the exercise. You now have a fully working login process.

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS372

7249ch19.qxd 11/13/06 9:23 PM Page 372

Summary
In this chapter, you completed the functionality that initiates the checkout process for a cus-
tomer after they have added the desired items to their shopping cart. They now have the
ability to register a new account or log in to an existing account. After either of these actions
takes place, the user needs to complete the transaction by entering their payment informa-
tion, or more specifically their credit card information, to pay for their order. The following
chapter will explain the next part of the checkout process, which captures the payment infor-
mation and finalizes the transaction of the order.

CHAPTER 19 ■ IMPLEMENTING THE CHECKOUT PROCESS 373

7249ch19.qxd 11/13/06 9:23 PM Page 373

7249ch19.qxd 11/13/06 9:23 PM Page 374

Processing the Payment

In this chapter, you will address the final portion of the checkout process; specifically, you
will implement the functionality to accept a payment from the user. It goes without saying
that you certainly hope that this action occurs frequently, because that translates to a lot of
sales being made! Knowing this, you have to thoroughly test this functionality and ensure that
you take all the necessary security measures.

This chapter will cover the following functionality as well as show how to implement
some of the application programming interface (API) source code that is supplied with the
PayPal SDK:

• Implementing the PayPal API code

• Entering the billing information

• Submitting the payment

• Finalizing the payment and order

Implementing the PayPal API Code
A few chapters ago, you created the PayPal test account and configured everything you needed
to test the credit card–processing functionality of the PayPal account. You briefly addressed the
PayPal API code, but you still have a fair amount of implementation to complete before you
have the ability to accept a credit card payment for the goods you are selling.

In this section of the chapter, you will add the necessary code and functionality; specifically,
the following exercise will show you how to implement the PayPal API credentials.

375

C H A P T E R 2 0

■ ■ ■

7249ch20.qxd 11/13/06 9:23 PM Page 375

Exercise: Implementing PayPal API Credentials

In this chapter, you will focus on the functionality to allow users to submit the credit card payment information to
PayPal, determine whether the transaction is successful, and if not, alert the user why it wasn’t. In this exercise,
you’ll implement the PayPal API credentials. Follow these steps:

1. Return to the LittleItalyVineyard.Operational class library within your source code and then to the
PayPalManager class. You first need to add some references: System.Security, System.Web, the local
project LittleItalyVineyard.Common class library project, and the namespace that was added for the
PayPal sandbox (LittleItalyVineyard.Operational.PayPalAPI.Sandbox). After adding the references, add
these namespaces to the PayPalManager class:

using System.Web;
using System.IO;
using System.Security.Cryptography.X509Certificates;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.Operational.PayPalAPI.Sandbox;

2. After adding the necessary references, proceed to the constructor of the PayPalManager class. In the
constructor, you will first address the credentials and security that will be needed each time you
utilize the PayPal API calls. The first step is to instantiate two classes from the PayPal APIs, namely,
PayPalAPIAASoapBinding and PayPalAPISoapBinding, as shown in the following code sample:

using System;
using System.Configuration;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.IO;
using System.Security.Cryptography.X509Certificates;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.Operational.PayPalAPI.Sandbox;

namespace LittleItalyVineyard.Operational
{

public class PayPalManager
{

private PayPalAPIAASoapBinding PPInterface =➥

new PayPalAPIAASoapBinding();
private PayPalAPISoapBinding service =➥

new PayPalAPISoapBinding();

public PayPalManager()
{

CHAPTER 20 ■ PROCESSING THE PAYMENT376

7249ch20.qxd 11/13/06 9:23 PM Page 376

}
}

}

3. Continuing building the PayPalManager constructor; specifically, implement the username and pass-
word for accessing and implementing the PayPal APIs. Add the following code to the constructor:

using System;
using System.Configuration;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.IO;
using System.Security.Cryptography.X509Certificates;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.Operational.PayPalAPI.Sandbox;

namespace LittleItalyVineyard.Operational
{

public class PayPalManager
{

private PayPalAPIAASoapBinding PPInterface =➥

new PayPalAPIAASoapBinding();
private PayPalAPISoapBinding service =➥

new PayPalAPISoapBinding();

public PayPalManager()
{

UserIdPasswordType user = new UserIdPasswordType();

user.Username = ConfigurationManager.➥

AppSettings["PayPalAPIUsername"];
user.Password = ConfigurationManager.➥

AppSettings["PayPalAPIPassword"];
}

}
}

How It Works

The previous code utilizes the UserPasswordType class and then sets the Username and Password
properties to what was registered when a sandbox account was established. Notice that you stored the
username and password, appropriately named PayPalAPIUsername and PayPalAPIPassword, in the
Web.config file within the appSettings. To complete this exercise step, add the PayPal API username
and password to the Web.config file.

CHAPTER 20 ■ PROCESSING THE PAYMENT 377

7249ch20.qxd 11/13/06 9:23 PM Page 377

4. Moving along, you need to now specify the uniform resource locator (URL) for the PayPal API. In this
case, you are still going to use the PayPal sandbox. Make the following addition to the constructor
code:

using System;
using System.Configuration;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.IO;
using System.Security.Cryptography.X509Certificates;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.Operational.PayPalAPI.Sandbox;

namespace LittleItalyVineyard.Operational
{

public class PayPalManager
{

private PayPalAPIAASoapBinding PPInterface =➥

new PayPalAPIAASoapBinding();
private PayPalAPISoapBinding service =➥

new PayPalAPISoapBinding();

public PayPalManager()
{

UserIdPasswordType user = new UserIdPasswordType();

user.Username = ConfigurationManager.➥

AppSettings["PayPalAPIUsername"];
user.Password = ConfigurationManager.➥

AppSettings["PayPalAPIPassword"];

PPInterface.Url = ConfigurationManager.➥

AppSettings["PayPalAPIURL"];

PPInterface.RequesterCredentials =➥

new CustomSecurityHeaderType();
PPInterface.RequesterCredentials.Credentials =➥

new UserIdPasswordType();
PPInterface.RequesterCredentials.Credentials = user;

}
}

}

CHAPTER 20 ■ PROCESSING THE PAYMENT378

7249ch20.qxd 11/13/06 9:23 PM Page 378

How It Works

The PPInterface class specifies the URL, which is then obtained from the Web.config file within the
appSettings. As mentioned, you are utilizing the sandbox, so the URL specified within the Web.config
file is as follows:

<appSettings>
<add key="PayPalAPIURL"
value="https://api-aa.sandbox.paypal.com/2.0/"/>

</appSettings>

You finalize this code by instantiating the CustomSecurityHeaderType class and by setting the Creden-
tials property to that of the UserIdPasswordType class that you implemented earlier in the exercise.

5. The final step in the exercise is to incorporate the certificate that will be used for the API access. You
will implement that access to the certificate, LittleItalyVineyards.p12, by means of the file system:

using System;
using System.Configuration;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.IO;
using System.Security.Cryptography.X509Certificates;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.Operational.PayPalAPI.Sandbox;

namespace LittleItalyVineyard.Operational
{

public class PayPalManager
{

private PayPalAPIAASoapBinding PPInterface =➥

new PayPalAPIAASoapBinding();
private PayPalAPISoapBinding service =➥

new PayPalAPISoapBinding();

public PayPalManager()
{

UserIdPasswordType user = new UserIdPasswordType();

user.Username = ConfigurationManager.➥

AppSettings["PayPalAPIUsername"];
user.Password = ConfigurationManager.➥

AppSettings["PayPalAPIPassword"];

PPInterface.Url = ConfigurationManager.➥

AppSettings["PayPalAPIURL"];

CHAPTER 20 ■ PROCESSING THE PAYMENT 379

7249ch20.qxd 11/13/06 9:23 PM Page 379

PPInterface.RequesterCredentials =➥

new CustomSecurityHeaderType();
PPInterface.RequesterCredentials.Credentials =➥

new UserIdPasswordType();
PPInterface.RequesterCredentials.Credentials = user;

FileStream fstream = File.Open(CertPath ,➥

FileMode.Open , FileAccess.Read);
byte[] buffer = new byte[fstream.Length];

int count = fstream.Read(buffer , 0 , buffer.Length);

fstream.Close();

X509Certificate2 cert = new X509Certificate2(buffer ,➥

CertPassword);
PPInterface.ClientCertificates.Add(cert);

}

private string CertPath
{

get { return HttpContext.Current.Server.MapPath(➥

ConfigurationManager.AppSettings["CertificatePath"]); }
}

private string CertPassword
{

get { return ConfigurationManager.➥

AppSettings["CertificatePassword"]; }
}

}
}

How It Works

The first item I need to discuss is the property that you added, CertPath. This property is a read-only
property that will return the file path of the certificate file by obtaining the value from the Web.config
file and then returning that value using the Server.MapPath function to return the full path. The value of
the CertificatePath from the Web.config file is as follows:

<appSettings>
<add key="CertificatePath" value="Certs/LittleItalyVineyards.p12"/>

</appSettings>

CHAPTER 20 ■ PROCESSING THE PAYMENT380

7249ch20.qxd 11/13/06 9:23 PM Page 380

This full file path of the certificate is then used within a FileStream to open and read the certificate into
a byte array, and then the FileStream is then closed. The X509Certificate2 class is then instantiated
along with passing the byte array with the password that was used when you created the certificate in
Chapter 18. This password is retrieved from the CertPassword property, which in turn retrieves the cer-
tificate password from the Web.config file.

You have completed the implementation of the PayPalManager class constructor where the credentials will be
established. Now, anytime the class is instantiated, all the credentials will be set up automatically. Then another
method can be called from within the PayPalManager without having to be concerned with the password and cre-
dentials for accessing the PayPal APIs.

Implementing the Direct Payment
You have only begun the overall implementation of the PayPal API code. In the previous section
of the chapter, you established a methodology that will create all the necessary credentials for
accessing the APIs within the PayPalManager class constructor. The next step is to address the
functionality that will allow a user to submit a payment to the PayPal web service to transact
a complete order.

The following exercise will demonstrate all the necessary steps.

Exercise: Implementing the Direct Payment

In this exercise, you will add the functionality to allow a user to submit a payment to the PayPal web service to
transact a complete order. Follow these steps:

1. While you are still in the PayPalManager class, create a method named ProcessDirectPayment:

public void ProcessDirectPayment()
{

}

2. The ProcessDirectPayment method contained in the PayPalManager class requires quite a lot of code.
However, you will take it step by step. First, add the PayPal API classes that are needed, and then spec-
ify that the transaction will be that of a sale by adding the following code to the ProcessDirectPayment
method:

public void ProcessDirectPayment()
{

DoDirectPaymentRequestType DoDirectPmtReqType =➥

new DoDirectPaymentRequestType();
DoDirectPmtReqType.DoDirectPaymentRequestDetails =➥

new DoDirectPaymentRequestDetailsType();

// Set payment action
DoDirectPmtReqType.DoDirectPaymentRequestDetails.➥

PaymentAction = PaymentActionCodeType.Sale;

CHAPTER 20 ■ PROCESSING THE PAYMENT 381

7249ch20.qxd 11/13/06 9:23 PM Page 381

DoDirectPmtReqType.DoDirectPaymentRequestDetails.➥

IPAddress = HttpContext.Current.Request.UserHostAddress;
}

How It Works

The previously implemented code utilizes the DoDirectPaymentRequestType class from the PayPal
APIs. After this class is instantiated, the DoDirectPaymentRequestDetails class is instantiated. Finally,
the PaymentActionCodeType enumeration is set to that of the type Sale since this functionality will be
used only to process orders that are being sold. The final line of code sets the IPAddress property of
the DoDirectPaymentRequestDetails class to that of the IP address of the user making the purchase.
The IP address is retrieved by using Request.UserHostAddress from the current HTTPContext.

3. To add the remainder of the code, you have to address the parameters you will need to populate the
PayPal API classes and eventually submit the payment. With that said, this information has to be
passed into the ProcessDirectPayment method as a parameter. These parameters will consist of
a struct named PayPalInformation. So, you first need to create this struct within the same filename,
PayPalManger, but outside of the PayPalManager class. The code will look like the following:

public struct PayPalInformation
{

public Orders Order;
}

How It Works

The struct added, PayPalInformation, contains only one common object or class. More specifically, it is
that of the Orders class. This essentially means you will be able to populate an Orders class that is part
of the PayPalInformation struct.

4. Now that you have the PayPalInformation struct completed, you need to utilize it by adding it to the
ProcessDirectPayment method as a parameter. The method will now resemble the following:

public void ProcessDirectPayment(PayPalInformation paypalinformation)
{

}

5. Moving along, you can now begin to populate the credit card details needed to be eventually used in
the ProcessDirectPayment method. Add the following code:

// Set CreditCard info.
DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard =➥

new CreditCardDetailsType();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.➥

CreditCardNumber = paypalinformation.Order.CreditCard.Number;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.➥

CreditCardType = (CreditCardTypeType) StringToEnum➥

CHAPTER 20 ■ PROCESSING THE PAYMENT382

7249ch20.qxd 11/13/06 9:23 PM Page 382

(typeof(CreditCardTypeType) ,
paypalinformation.Order.CreditCard.CardType);

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CVV2 =➥

paypalinformation.Order.CreditCard.SecurityCode;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.ExpMonth =➥

paypalinformation.Order.CreditCard.ExpMonth;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.ExpYear =➥

paypalinformation.Order.CreditCard.ExpYear;

How It Works

In the code you just added, you have viewed for the first time how you will use the struct PayPalInformation.
As I mentioned when you added the struct, there will be a common object of the class Orders. You
can witness that this is then used from the struct to populate the information needed for the credit
card. Therefore, the previous code instantiates the CreditCardDetailsType class from the PayPal
APIs and then subsequently is populated by the PayPalInformation struct. Lastly, with regard to the
CreditCardTypeType, you introduced a new function in the overall PayPalManager class. This new func-
tion is named StringToEnum, and it allows the matching of the credit card type to that of the enumeration
of the credit card type provided by PayPal. The following is the new function:

private static object StringToEnum(Type typ , string val)
{

object objectOut = null;

foreach (System.Reflection.FieldInfo fieldinfo in typ.GetFields())
{

if (fieldinfo.Name == val)
{

objectOut = fieldinfo.GetValue(null);
}

}

return objectOut;
}

In this new function, an object is returned as a result of the enumeration type being passed in as
a parameter, and the string value of the credit card type is returned. Using the reflection classes of the
framework, the object is returned upon there being a match to the enumeration and thus having the
PayPal API credit card type set to the enumerated value.

6. The next portion of the method you’re implementing is the credit card billing address and the name of
the cardholder. This information too will be supplied from the Orders class that is part of the struct. This
is the next portion of code you need to add:

CHAPTER 20 ■ PROCESSING THE PAYMENT 383

7249ch20.qxd 11/13/06 9:23 PM Page 383

// Set the billing address

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner =➥

new PayerInfoType();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

PayerName = new PersonNameType();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

PayerName.FirstName = paypalinformation.Order.EndUser.FirstName;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

PayerName.LastName = paypalinformation.Order.EndUser.LastName;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

Address = new AddressType();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

Address.Street1 = paypalinformation.Order.CreditCard.Address.AddressLine;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

Address.Street2 = paypalinformation.Order.CreditCard.Address.➥

AddressLine2;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

Address.CityName = paypalinformation.Order.CreditCard.Address.City;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

Address.StateOrProvince = paypalinformation.Order.CreditCard.➥

Address.State;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

Address.PostalCode = paypalinformation.Order.CreditCard.Address.➥

PostalCode;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

Address.CountrySpecified = true;
DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

Address.Country = CountryCodeType.US;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.CreditCard.CardOwner.➥

Address.Phone = paypalinformation.Order.EndUser.ContactInformation.Phone;

How It Works

In this added code, you can see that in the same fashion that the credit card information is populated,
the credit card owner’s information and the cardholder’s address are populated.

CHAPTER 20 ■ PROCESSING THE PAYMENT384

7249ch20.qxd 11/13/06 9:23 PM Page 384

7. To proceed, you will now address how the PayPal APIs will be populated with the products the cus-
tomer is wanting to buy. In a similar fashion, this information will be populated, but as you will be able
to see, you need to loop through all the products that were originally added to the shopping cart when
the customer decided to check out and finalize. The following is the code:

PaymentDetailsItemType[] itemArray = new PaymentDetailsItemType[➥

paypalinformation.Order.OrderDetails.Products.Length];
PaymentDetailsItemType items = null;

// Loop through all items that were added to the shopping cart.
for (int i = 0 ; i < paypalinformation.Order.OrderDetails.Products.➥

Length ; i++)
{

items = new PaymentDetailsItemType();
items.Amount = new BasicAmountType();
items.Amount.Value = paypalinformation.Order.OrderDetails.➥

Products[i].Price.ToString();
items.Amount.currencyID = CurrencyCodeType.USD;
items.Quantity = paypalinformation.Order.OrderDetails.Products[i].➥

Quantity.ToString();

items.Name = paypalinformation.Order.OrderDetails.Products[i].Name;
items.Number = paypalinformation.Order.OrderDetails.Products[i].➥

ProductID.ToString();

itemArray.SetValue(items , i);
}

// set payment Details
DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails =➥

new PaymentDetailsType();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

Custom = System.DateTime.Now.ToLongTimeString();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

OrderDescription = "";

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

PaymentDetailsItem = new PaymentDetailsItemType[itemArray.Length];

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

PaymentDetailsItem = itemArray;

for (int ii = 0 ; ii < itemArray.Length ; ii++)
{ DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

PaymentDetailsItem.SetValue(itemArray[ii] , ii);
}

CHAPTER 20 ■ PROCESSING THE PAYMENT 385

7249ch20.qxd 11/13/06 9:23 PM Page 385

How It Works

The previous code, as mentioned, will loop through the individual products that are eventually being paid
for by the customer. As a result of the Orders class that is part of the PayPalInformation struct, there is
an array of the Products class as part of the OrderDetails. From this array, the PaymentDetailsItemType
is populated with each of the products that the user selected for purchase.

8. The next step in this exercise (prior to submitting the information to be officially processed) is to complete
some additional details. These details, more specifically, are the details of the order and the shipping
address of where the merchandise will be sent. Add the following code:

// Order summary.
DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

OrderTotal = new BasicAmountType();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

OrderTotal.currencyID = CurrencyCodeType.USD;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

OrderTotal.Value = paypalinformation.Order.OrderTotal.ToString();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ShippingTotal = new BasicAmountType();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ShippingTotal.currencyID = CurrencyCodeType.USD;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ShippingTotal.Value = paypalinformation.Order.ShippingTotal.ToString();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

TaxTotal = new BasicAmountType();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

TaxTotal.currencyID = CurrencyCodeType.USD;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

TaxTotal.Value = paypalinformation.Order.Tax.ToString();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ItemTotal = new BasicAmountType();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ItemTotal.currencyID = CurrencyCodeType.USD;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ItemTotal.Value = paypalinformation.Order.SubTotal.ToString();

//set ship to address

CHAPTER 20 ■ PROCESSING THE PAYMENT386

7249ch20.qxd 11/13/06 9:23 PM Page 386

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ShipToAddress = new AddressType();

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ShipToAddress.Name = paypalinformation.Order.EndUser.➥

FirstName + " " + paypalinformation.Order.EndUser.LastName;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ShipToAddress.Street1 = paypalinformation.Order.➥

ShippingAddress.AddressLine;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ShipToAddress.CityName = paypalinformation.Order.➥

ShippingAddress.City;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ShipToAddress.StateOrProvince = paypalinformation.Order.➥

ShippingAddress.State;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ShipToAddress.PostalCode = paypalinformation.Order.➥

ShippingAddress.PostalCode;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ShipToAddress.CountrySpecified = true;

DoDirectPmtReqType.DoDirectPaymentRequestDetails.PaymentDetails.➥

ShipToAddress.Country = CountryCodeType.US;

// credentials
DoDirectPaymentReq DoDPReq = new DoDirectPaymentReq();
DoDPReq.DoDirectPaymentRequest = DoDirectPmtReqType;
DoDPReq.DoDirectPaymentRequest.Version = "2.20";

How It Works

The previously added code follows the same methodology as in earlier steps. The summary details of
the complete order are populated to the PayPal APIs along with the shipping address, all originating
from the PayPalInformation struct that has been passed as a parameter into the method.

9. The final task to implement within the API code is to submit the actual request to the PayPal service.
When accomplishing this task, you will have information returned to you that will provide the informa-
tion about what the result was with the posted transaction. The code is as follows:

try
{

//make call return response
DoDirectPaymentResponseType DPRes = new DoDirectPaymentResponseType();

CHAPTER 20 ■ PROCESSING THE PAYMENT 387

7249ch20.qxd 11/13/06 9:23 PM Page 387

DPRes = PPInterface.DoDirectPayment(DoDPReq);
string errors = CheckForErrors(DPRes);

if (errors == string.Empty)
{

IsSubmissionSuccess = true;
paypalinformation.Order.TransactionID = DPRes.TransactionID;

}
else
{

IsSubmissionSuccess = false;
SubmissionError = errors;

}
}
catch (Exception ex)
{

throw ex;
}

How It Works

When examining the newly added code, you will notice that there is a new function that will validate
the response that is returned. The name of this new function is CheckForErrors, and the response is
passed in as a parameter. Therefore, you also need to add this function, as outlined in the following
code:

private string CheckForErrors(AbstractResponseType abstractResponse)
{

bool errorsExist = false;
string errorList = "";

// First, check if Ack is not Success
if (!abstractResponse.Ack.Equals(AckCodeType.Success))
{

errorsExist = true;
}

// Check for nothing in the Errors Collection
if (abstractResponse.Errors != null)
{

if (abstractResponse.Errors.Length > 0)
{

errorsExist = true;
errorList = "ERROR: ";
for (int i = 0 ; i < abstractResponse.Errors.Length ; i++)
{

errorList += abstractResponse.Errors[i].LongMessage +
" (" + abstractResponse.Errors[i].ErrorCode + ")" +

CHAPTER 20 ■ PROCESSING THE PAYMENT388

7249ch20.qxd 11/13/06 9:23 PM Page 388

Environment.NewLine;
}

}
}

return errorList;
}

The CheckForErrors function examines the return response from the PayPal API payment submission to
determine whether any errors have occurred. These types of errors are not errors that will cause the
processing to fail completely, but rather to not complete the payment transaction. Some examples
could be an invalid credit card number, the incorrect calculation of the order total, or perhaps the credit
card being declined. In any case, a string of the errors will be returned from the function, and if every-
thing is successful, the string returned will be that of an empty string.

Lastly, you also need to add some properties to the class. These are IsSubmissionSuccess and
SubmissionError. Add the following to the code as well:

private bool _issubmissionsuccess;
private string _submissionerror;

public bool IsSubmissionSuccess
{

get { return _issubmissionsuccess; }
set { _issubmissionsuccess = value; }

}

public string SubmissionError
{

get { return _submissionerror; }
set { _submissionerror = value; }

}

After you add these properties and field names, you can address the actual posting of the payment to
PayPal. The DoDirectPaymentResponseType class is instantiated, and the DoDirectPayment method of
the PPInterface is called, which is the explicit call to submit the payment to the PayPal APIs. The result
of this transmission is then checked for either the success or the failure of the direct payment. Upon
the submission being returned, the IsSubmissionSuccess Boolean property is set to either true or false,
and if there are any errors detected, the SubmissionError property is populated with the error message.

Now that you are done with this exercise, users have the ability to submit a direct payment to PayPal by means of
the supplied APIs and web service. You’ll now move along to the remaining sections of the chapter that will outline
how to assemble the entire process.

CHAPTER 20 ■ PROCESSING THE PAYMENT 389

7249ch20.qxd 11/13/06 9:23 PM Page 389

Entering the Billing and Shipping Information
In the previous section, you implemented the code that you will utilize for processing the pay-
ments for the products that the customers purchase. I will now explain the necessary steps to
implement and capture the information that will be populated with the PayPal APIs to ulti-
mately accept the payment for the goods; see the next exercise.

Exercise: Obtaining the Billing and Shipping Information

In this exercise, you will pick up where you left off when the customer either registered for a new account or
logged in to their existing account when they decided they were finished shopping for products. Therefore, they
will arrive at the page that requires the shipping address, credit card information, and credit card billing address
information. This exercise will explain all these tasks that you need to incorporate in your code. Follow these steps:

1. First add the CheckOut.aspx web form to the web project. As mentioned, this page will allow the user
to enter their shipping address, credit card information, and credit card billing address information.
After adding the new web form and associating it with the respective master page, add a GridView
control to display the contents of the shopping cart along with the total cost of the items contained
within the cart. The HTML code is as follows:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="CheckOut.aspx.cs"
Inherits="CheckOut" Title="Little Italy Vineyard | Check Out" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<table cellpadding="0" cellspacing="0" border="0"
width="95%" align="center">
<tr>

<td></td>
<td width="100%"></td>
<td></td>

</tr>
<tr>

<td></td>
<td class="prodUnderlineBG" width="100%">

<img src="images/spacer.gif"
width="1" height="4" />
</td>
<td></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="3" /></td></tr>
<tr>

<td></td>

CHAPTER 20 ■ PROCESSING THE PAYMENT390

7249ch20.qxd 11/13/06 9:23 PM Page 390

<td>
<asp:GridView ID="gridviewShoppingCart" runat="server"
AutoGenerateColumns="false" ShowHeader="True"
Width="100%"
DataKeyNames="Quantity,ShoppingCartID"

OnRowDataBound="gridviewShoppingCart_RowDataBound"
BorderWidth="0px">

<Columns>

<asp:TemplateField ItemStyle-Width="25%"
ItemStyle-HorizontalAlign="center"
HeaderStyle-HorizontalAlign="center" HeaderText="Product">

<ItemTemplate>
<%# Eval("ProductName") %>

</ItemTemplate>
</asp:TemplateField>

<asp:TemplateField ItemStyle-HorizontalAlign="center"
ItemStyle-Width="25%" HeaderStyle-HorizontalAlign="center"
HeaderText="Quantity">

<ItemTemplate>
<%# Eval("Quantity") %>

</ItemTemplate>
</asp:TemplateField>

<asp:TemplateField ItemStyle-HorizontalAlign="center"
ItemStyle-Width="25%" HeaderStyle-HorizontalAlign="center"
HeaderText="Unit Cost">

<ItemTemplate>
<%# Eval("UnitPrice" , "{0:c}")%>

</ItemTemplate>
</asp:TemplateField>

<asp:TemplateField ItemStyle-HorizontalAlign="center"
ItemStyle-Width="25%" HeaderStyle-HorizontalAlign="center"
HeaderText="Subtotal">

<ItemTemplate>
<%# Eval("TotalPrice" , "{0:c}")%>

</ItemTemplate>
</asp:TemplateField>

</Columns>
</asp:GridView>

</td>
<td></td>

</tr><tr><td>

</td></tr>

</table>
</asp:Content>

CHAPTER 20 ■ PROCESSING THE PAYMENT 391

7249ch20.qxd 11/13/06 9:23 PM Page 391

How It Works

The previous HTML code you added contains the GridView control named gridviewShoppingCart and
has designated four individual columns for the grid. The columns that are data bound are ProductName,
Quantity, UnitPrice, and TotalPrice. The last two columns are formatted to display a currency type.

2. Upon adding the GridView for displaying the shopping cart items, you need to add the text boxes for the
shipping address. The following is the HTML code:

<tr>
<td></td>
<td class="prodUnderlineBG" width="100%">

</td>

<td></td>
</tr>
<tr>

<td></td>
<td class="prodUnderlineBG" width="100%">

<img src="images/spacer.gif" width="1"
height="2" /></td>

<td></td>
</tr>

<tr><td><img src="images/spacer.gif" width="1"
height="5" />
</td></tr>

<tr>
<td></td>
<td align="right">

<table border="0" cellpadding="2" cellspacing="0">
<tr>

<td>Subtotal:</td>
<td><img src="images/spacer.gif" width="15"
height="1" /></td>

<td style="width: 69px;">
<asp:Label ID="labelSubTotal"
runat="server" Width="100%">

</asp:Label></td>
</tr>
<tr>

<td>Tax:</td>
<td></td>
<td><asp:Label ID="labelTax" runat="server"
Width="100%"></asp:Label></td>

</tr>
</table>

</td>
<td></td>

</tr>

CHAPTER 20 ■ PROCESSING THE PAYMENT392

7249ch20.qxd 11/13/06 9:23 PM Page 392

</table>

<table border="0" cellpadding="0" cellspacing="2"
width="90%" align="center">

<tr>
<td colspan="3">Shipping Information</td>

</tr>
<tr>

<td align="center" colspan="3">
<table cellpadding="0" cellspacing="0" border="0"

width="100%">
<tr>

<td width="100%" class="separatorBG">
<img src="images/spacer.gif" width="1" height="1"
border="0" /></td>
<td>

</td>

</tr>
</table>

</td>
</tr>

<tr><td>
<img src="images/spacer.gif" width="1"

height="3" /></td></tr>
<tr>

<td></td>
<td>First Name:</td>

<td>
<asp:TextBox ID="textFirstname" runat="server"
CssClass="textField"></asp:TextBox></td>

</tr>
<tr>

<td></td>
<td>Last Name:</td>

<td>
<asp:TextBox ID="textLastname" runat="server"
CssClass="textField"></asp:TextBox></td>

</tr>
<tr>

<td></td>
<td>Address:</td>

<td><asp:TextBox ID="textAddress" runat="server"
CssClass="textField"></asp:TextBox>
<asp:RequiredFieldValidator ID="requiredAddress"
runat="server" Display="Dynamic"
EnableClientScript="False"

CHAPTER 20 ■ PROCESSING THE PAYMENT 393

7249ch20.qxd 11/13/06 9:23 PM Page 393

ErrorMessage="Address Required."
ControlToValidate="textAddress" Width="152px">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td></td>
<td>Address 2:</td>

<td><asp:TextBox ID="textAddress2" runat="server"
CssClass="textField"></asp:TextBox></td>

</tr>
<tr>

<td></td>
<td>City:</td>

<td><asp:TextBox ID="textCity" runat="server"
CssClass="textField"></asp:TextBox>
<asp:RequiredFieldValidator ID="requiredCity"
runat="server" Display="Dynamic"
EnableClientScript="False"
ErrorMessage="

City Required." ControlToValidate="textCity">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td></td>
<td>State:</td>

<td><asp:TextBox ID="textState" runat="server"
CssClass="textField"></asp:TextBox>
<asp:RequiredFieldValidator ID="requiredState"
runat="server" Display="Dynamic"
EnableClientScript="False"
ErrorMessage="State Required."
ControlToValidate="textState">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td></td>
<td>Postal Code:</td>

<td><asp:TextBox ID="textPostalCode" runat="server"
CssClass="textField"></asp:TextBox>
<asp:RequiredFieldValidator ID="requiredPostalCode"
runat="server" Display="Dynamic"
EnableClientScript="False" ErrorMessage="Postal Code Required."
ControlToValidate="textPostalCode" Width="152px">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td></td>

CHAPTER 20 ■ PROCESSING THE PAYMENT394

7249ch20.qxd 11/13/06 9:23 PM Page 394

<td>Shipping Options:</td>
<td><asp:DropDownList ID="dropdownlistShippingOption"
runat="server" CssClass="textField">

<asp:ListItem Value="5.99">Ground $5.99</asp:ListItem>
<asp:ListItem Value="8.99">2nd Day $8.99</asp:ListItem>
<asp:ListItem Value="10.99">Next Day Air $10.99</asp:ListItem>

</asp:DropDownList></td>
</tr>

<tr><td>
</td></tr>

How It Works

The previous HTML code adds the text boxes along with the necessary validation controls to capture
the customer’s name, their shipping address, and how they would like to have their merchandise shipped.
More specifically, the customer will be given three options for the shipping method: ground, second day,
or next day. These different shipping options and costs are hard-coded into the application for demon-
stration purposes. Depending on your needs, certain services can dynamically generate the shipping
options and costs as a result of entering the originating postal code and the destination postal code.

3. After the shipping information, the next section you need is for the actual credit card information along
with the billing address information. This will be followed by a CheckBox control that will serve as the
terms for the customer to agree to that they are “of age” to make purchases from the winery. Therefore,
add the following HTML code:

<tr>
<td colspan="3">Payment</td>

</tr>
<tr>

<td align="center" colspan="3">
<table cellpadding="0" cellspacing="0"

border="0"
width="100%">

<tr>
<td width="100%"

class="separatorBG">
<img src="images/spacer.gif"
width="1" height="1"

border="0" /></td>
<td>

</td>

</tr>
</table>

</td>
</tr>

<tr><td>

CHAPTER 20 ■ PROCESSING THE PAYMENT 395

7249ch20.qxd 11/13/06 9:23 PM Page 395

</td></tr>
<tr>

<td></td>
<td>Credit Card:</td>

<td><asp:DropDownList ID="dropdownlistCreditCardType"
runat="server" CssClass="textField">
<asp:ListItem Text="American Express" Value="Amex">
</asp:ListItem>
<asp:ListItem Text="Master Card" Value="MasterCard">
</asp:ListItem>
<asp:ListItem Text="Visa" Value="Visa"></asp:ListItem>
<asp:ListItem Text="Discover" Value="Discover">
</asp:ListItem>

</asp:DropDownList></td>
</tr>
<tr>

<td></td>
<td>Credit Card Number:</td>

<td>
<asp:TextBox ID="textCreditCardNumber" runat="server"
CssClass="textField"></asp:TextBox>
<asp:RequiredFieldValidator ID="requireCreditCardNumber"
runat="server" Display="Dynamic"
EnableClientScript="False"
ErrorMessage="Credit Card Number Required."
ControlToValidate="textCreditCardNumber">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td></td>
<td>Security Code:</td>

<td><asp:TextBox ID="textSecurityCode" runat="server"
CssClass="textField"></asp:TextBox>
<asp:RequiredFieldValidator ID="requireSecurityCode"
runat="server" Display="Dynamic"
EnableClientScript="False"
ErrorMessage="Security Code Required."
ControlToValidate="textSecurityCode">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td></td>
<td>Expiration Date:</td>

<td><asp:DropDownList ID="dropdownlistExpMonth"
runat="server" CssClass="monthYear">

<asp:ListItem Text="01" Value="01"></asp:ListItem>
<asp:ListItem Text="02" Value="02"></asp:ListItem>

CHAPTER 20 ■ PROCESSING THE PAYMENT396

7249ch20.qxd 11/13/06 9:23 PM Page 396

<asp:ListItem Text="03" Value="03"></asp:ListItem>
<asp:ListItem Text="04" Value="04"></asp:ListItem>
<asp:ListItem Text="05" Value="05"></asp:ListItem>
<asp:ListItem Text="06" Value="06"></asp:ListItem>
<asp:ListItem Text="07" Value="07"></asp:ListItem>
<asp:ListItem Text="08" Value="08"></asp:ListItem>
<asp:ListItem Text="09" Value="09"></asp:ListItem>
<asp:ListItem Text="10" Value="10"></asp:ListItem>
<asp:ListItem Text="11" Value="11"></asp:ListItem>
<asp:ListItem Text="12" Value="12"></asp:ListItem>

</asp:DropDownList>
<asp:DropDownList ID="dropdownlistExpYear" runat="server"

CssClass="monthYear">
<asp:ListItem Text="2006" Value="2006"></asp:ListItem>
<asp:ListItem Text="2007" Value="2007"></asp:ListItem>
<asp:ListItem Text="2008" Value="2008"></asp:ListItem>
<asp:ListItem Text="2009" Value="2009"></asp:ListItem>
<asp:ListItem Text="2010" Value="2010"></asp:ListItem>
<asp:ListItem Text="2011" Value="2011"></asp:ListItem>
<asp:ListItem Text="2012" Value="2012"></asp:ListItem>

</asp:DropDownList></td>
</tr>

<tr><td>
<img src="images/spacer.gif" width="1"

height="15" /></td></tr>
<tr>

<td colspan="3">Billing Address</td>
</tr>
<tr>

<td align="center" colspan="3">
<table cellpadding="0" cellspacing="0" border="0"
width="100%">

<tr>
<td width="100%" class="separatorBG">

<img src="images/spacer.gif"
width="1" height="1" border="0" />
</td>

<td></td>
</tr>

</table>
</td>

</tr>
<tr><td>
<img src="images/spacer.gif" width="1"

height="3" /></td></tr>
<tr>

<td></td>

CHAPTER 20 ■ PROCESSING THE PAYMENT 397

7249ch20.qxd 11/13/06 9:23 PM Page 397

<td>Address:</td>
<td><asp:TextBox ID="textBillingAddress" runat="server"
CssClass="textField"></asp:TextBox>
<asp:RequiredFieldValidator ID="requireBillingAddress"
runat="server" Display="Dynamic"
EnableClientScript="False"
ErrorMessage="Billing Address Required."
ControlToValidate="textBillingAddress">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td></td>
<td>Address 2:</td>

<td><asp:TextBox ID="textBillingAddress2" runat="server"
CssClass="textField"></asp:TextBox></td>

</tr>
<tr>

<td></td>
<td>City:</td>

<td><asp:TextBox ID="textBillingCity" runat="server"
CssClass="textField"></asp:TextBox>
<asp:RequiredFieldValidator ID="requireBillingCity"
runat="server" Display="Dynamic"
EnableClientScript="False"
ErrorMessage="Billing City Required."
ControlToValidate="textBillingCity">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td></td>
<td>State:</td>

<td>
<asp:TextBox ID="textBillingState" runat="server"
CssClass="textField"></asp:TextBox>
<asp:RequiredFieldValidator ID="requireBillingState"
runat="server" Display="Dynamic"
EnableClientScript="False"
ErrorMessage="Billing State Required."
ControlToValidate="textBillingState">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td></td>
<td>Postal Code:</td>

<td><asp:TextBox ID="textBillingPostalCode"
runat="server" CssClass="textField"></asp:TextBox>
<asp:RequiredFieldValidator ID="requireBillingPostalCode"

CHAPTER 20 ■ PROCESSING THE PAYMENT398

7249ch20.qxd 11/13/06 9:23 PM Page 398

runat="server" Display="Dynamic"
EnableClientScript="False"
ErrorMessage="Billing Postal Code Required."
ControlToValidate="textBillingPostalCode">
</asp:RequiredFieldValidator></td>
</tr>
<tr>
<td>
</td><td></td><td>
<asp:CheckBox ID="checkboxVerify" runat="server"
AutoPostBack="True"
OnCheckedChanged="checkboxVerify_CheckedChanged"
Text="I certify that I am of legal age to purchase."
Width="100%" /></td>

</tr>
<tr><td>
<img src="images/spacer.gif" width="1"

height="15" /></td></tr>
<tr>

<td colspan="2"></td>
<td></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"

height="5" /></td></tr>
</table>

How It Works

The previous HTML code allows the customer to add the billing address that is associated with their
credit card. All validation is incorporated to ensure that all the necessary fields are populated with val-
ues. You will notice that the different types of credit cards and the expiration dates are hard-coded into
the web form. This implementation is hard-coded for simplicity in the overall demonstration; however,
it is certainly possible to generate this information dynamically if your requirements dictate this.

4. Now you’ll turn your attention to the C# code portion of the web form. Here in the code, you will
address a number of items, such as checking whether the connection is a secure connection. If it is
not, you will redirect the user to the secure connection. Lastly, you will need to load the shopping cart
information along with the information from the user who has just logged in. The code is as follows:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

CHAPTER 20 ■ PROCESSING THE PAYMENT 399

7249ch20.qxd 11/13/06 9:23 PM Page 399

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;
using LittleItalyVineyard.Operational;

public partial class CheckOut : BasePage
{

private decimal _totalcounter;

protected void Page_Load(object sender , EventArgs e)
{

if (! Request.IsSecureConnection)
{

Response.Redirect(base.UrlBaseSSL);
}

if (! IsPostBack)
{

LoadShoppingCart();
LoadInformation();

}
}

private void LoadInformation()
{

textFirstname.Text = base.CurrentEndUser.FirstName;
textLastname.Text = base.CurrentEndUser.LastName;

// Populate shipping address information.
textAddress.Text = base.CurrentEndUser.Address.AddressLine;
textAddress2.Text = base.CurrentEndUser.Address.AddressLine2;
textCity.Text = base.CurrentEndUser.Address.City;
textState.Text = base.CurrentEndUser.Address.State;
textPostalCode.Text = base.CurrentEndUser.Address.PostalCode;

}

protected void gridviewShoppingCart_RowDataBound(object sender , ➥

GridViewRowEventArgs e)
{

if (e.Row.RowType == DataControlRowType.DataRow)
{

_totalcounter += Convert.ToDecimal(DataBinder.Eval➥

(e.Row.DataItem , "TotalPrice"));
}

CHAPTER 20 ■ PROCESSING THE PAYMENT400

7249ch20.qxd 11/13/06 9:23 PM Page 400

labelSubTotal.Text = string.Format("{0:c}" , _totalcounter);
labelTax.Text = string.Format("{0:c}" , ➥

(CalculationManager.CalcSalesTax(_totalcounter)));
}

private void LoadShoppingCart()
{

LittleItalyVineyard.Common.ShoppingCart shoppingcart = new➥

LittleItalyVineyard.Common.ShoppingCart();
shoppingcart.CartGUID = Utilities.GetCartGUID();

ProcessGetShoppingCart processgetcart =➥

new ProcessGetShoppingCart();
processgetcart.ShoppingCart = shoppingcart;

try
{

processgetcart.Invoke();
gridviewShoppingCart.DataSource = processgetcart.ResultSet;
gridviewShoppingCart.DataBind();

}
catch
{

Response.Redirect("ErrorPage.aspx");
}

}
}

How It Works

As mentioned, within the page load event, the first task is to check whether the incoming request is
a secure connection, or more specifically whether it uses the SSL certificate. The reason for this is
because on this page, you will be asking the customer to enter their credit card information, and you
certainly want this to be over the secure channel. You achieve this by first examining the request with
the IsSecureConnection property. If this property is false, you will redirect the application to the secure
connection. You will be able to determine the secure connection of the page by adding the following
property to the BasePage in the App_Code folder:

public string UrlBaseSSL
{

get { return Request.Url.AbsoluteUri.Replace➥

(@"http://" , @"https://"); }
}

The UrlBaseSSL property in the BasePage is a read-only property that will return a string utilizing the
request’s Url.AbsoluteUri property. This will then utilize the Replace function to remove the unsecure
specification with that of the secure specification.

CHAPTER 20 ■ PROCESSING THE PAYMENT 401

7249ch20.qxd 11/13/06 9:23 PM Page 401

■Note Depending on your development configuration, it is advisable to possibly disable or comment the
redirection to the secure connection if an SSL certificate is not installed and configured. However, ensure
that this is enabled when deploying to the production environment.

Lastly, you will finalize loading the page because the next request that will be handled will be a secure
connection, thus moving along to load the shopping cart items as well as the name of the person by
using the CurrentOrder class in the BasePage.

5. You now need to add the command button to take the information and direct users to a web page that
will summarize the information they have entered. With that being said, finalize the HTML code by
adding this segment:

<asp:Button ID="commandSubmit" runat="server"
Text="Continue" Width="136px"
OnClick="commandSubmit_Click"
CssClass="button" Enabled="False" />

6. With the HTML code in place, you will now add the respective C# code for the commandSubmit click
event. However, notice that this command button’s Enabled property is false. The reasoning for this is
that you will prevent the user from continuing until they click the check box and subsequently agree
that they are “of age” to make the purchase. The checkboxVerify control has the AutoPostBack prop-
erty set to true so that when it’s clicked, you will also enable or disable the commandSubmit button.
Add the following code in the Checked Changed event:

protected void checkboxVerify_CheckedChanged(object sender , EventArgs e)
{

commandSubmit.Enabled = checkboxVerify.Checked;
}

protected void commandSubmit_Click(object sender , EventArgs e)
{

if (IsValid)
{

base.CurrentEndUser.FirstName = textFirstname.Text;
base.CurrentEndUser.LastName = textLastname.Text;
base.CurrentEndUser.Address.AddressLine = textAddress.Text;
base.CurrentEndUser.Address.AddressLine2 = textAddress2.Text;
base.CurrentEndUser.Address.City = textCity.Text;
base.CurrentEndUser.Address.State = textState.Text;
base.CurrentEndUser.Address.PostalCode = textPostalCode.Text;

base.CurrentOrder = new Orders();

CHAPTER 20 ■ PROCESSING THE PAYMENT402

7249ch20.qxd 11/13/06 9:23 PM Page 402

base.CurrentOrder.EndUser.FirstName = textFirstname.Text;
base.CurrentOrder.EndUser.LastName = textLastname.Text;

base.CurrentOrder.ShippingAddress.AddressLine = textAddress.Text;
base.CurrentOrder.ShippingAddress.AddressLine2 =➥

textAddress2.Text;
base.CurrentOrder.ShippingAddress.City = textCity.Text;
base.CurrentOrder.ShippingAddress.State = textState.Text;
base.CurrentOrder.ShippingAddress.PostalCode =➥

textPostalCode.Text;

base.CurrentOrder.CreditCard.CardType = ➥

dropdownlistCreditCardType.SelectedItem.Value;
base.CurrentOrder.CreditCard.Number = textCreditCardNumber.Text;
base.CurrentOrder.CreditCard.SecurityCode = textSecurityCode.Text;
base.CurrentOrder.CreditCard.ExpMonth = int.Parse➥

(dropdownlistExpMonth.SelectedItem.Text);
base.CurrentOrder.CreditCard.ExpYear = int.Parse➥

(dropdownlistExpYear.SelectedItem.Text);

base.CurrentOrder.CreditCard.Address.AddressLine = ➥

textBillingAddress.Text;
base.CurrentOrder.CreditCard.Address.AddressLine2 = ➥

textBillingAddress2.Text;
base.CurrentOrder.CreditCard.Address.City = textBillingCity.Text;
base.CurrentOrder.CreditCard.Address.State =➥

textBillingState.Text;
base.CurrentOrder.CreditCard.Address.PostalCode = ➥

textBillingPostalCode.Text;

labelTax.Text = labelTax.Text.Replace("$" , "");
base.CurrentOrder.Tax = Convert.ToDecimal(labelTax.Text);

labelSubTotal.Text = labelSubTotal.Text.Replace("$" , "");
base.CurrentOrder.SubTotal = Convert.ToDecimal➥

(labelSubTotal.Text);

base.CurrentOrder.ShippingTotal = Convert.ToDecimal➥

(dropdownlistShippingOption.SelectedItem.Value);

Response.Redirect("CheckOutConfirm.aspx");
}

}

CHAPTER 20 ■ PROCESSING THE PAYMENT 403

7249ch20.qxd 11/13/06 9:23 PM Page 403

How It Works

Within the click event for the button, the first item that is implemented is to check whether the request
on the page is valid by using the IsValid property. This property will return true if all the validation on
the page passes, and it will return false if there is a problem and will simply exit from the click event.
Moving along, since on this page you will not be officially submitting the information for payment just
yet, you will load the information into the CurrentOrder within the base page and redirect the user to
the CheckOutConfirm.aspx page where they will be able to review what they have entered.

You have arrived at the end of another exercise, and now I will demonstrate how to process the actual payment.

Submitting the Payment
You have now implemented all the code to process the payment and all the web pages to
capture the required information. The next step is to submit the actual payment to PayPal,
determine whether the payment is successful, and then give the customer an acknowledg-
ment of the payment. The following exercise shows how to do this.

Exercise: Submitting the Payment

You have now arrived at the section of the application where you collect all the information from the customer and
submit it for processing to complete the credit card transaction. Follow these steps:

1. In the previous exercise, you added the web page that collects all the information that is required. You
now need to add the web page that will display that information to allow the customer to confirm what
they entered. To do so, you need to add a new web form named CheckOutConfrm.aspx and associate it
with the appropriate master page to the web project. Upon adding the new web form, as with the prior
web form, you will add the display of the shopping cart items, the respective totals, and the information
that was entered by the user on the CheckOut.aspx web form:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="CheckOutConfirm.aspx.cs"
Inherits="CheckOutConfirm"
Title="Little Italy Vineyard | Check Out Confirmation" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">
<table cellpadding="0" cellspacing="0" border="0"

width="95%" align="Center">
<tr>

<td></td>
<td width="100%"></td>
<td></td>

</tr>

<tr>
<td></td>

CHAPTER 20 ■ PROCESSING THE PAYMENT404

7249ch20.qxd 11/13/06 9:23 PM Page 404

<td class="prodUnderlineBG" width="100%">

</td>

<td></td>
</tr>

<tr><td>
<img src="images/spacer.gif" width="1"

height="3" /></td></tr>
<tr>

<td></td>
<td>

<asp:GridView ID="gridviewShoppingCart" runat="server"
AutoGenerateColumns="false" ShowHeader="true"
Width="100%"
DataKeyNames="Quantity,ShoppingCartID,ProductID"
BorderWidth="0px">
<Columns>

<asp:TemplateField ItemStyle-Width="25%"
ItemStyle-HorizontalAlign="center"
HeaderStyle-HorizontalAlign="center"
HeaderText="Product">
<ItemTemplate>
<asp:Label id="labelProductName" runat="server"
Text='<%# Eval("ProductName") %>'>
</asp:Label>

</ItemTemplate>
</asp:TemplateField>

<asp:TemplateField ItemStyle-HorizontalAlign="center"
ItemStyle-Width="25%" HeaderStyle-HorizontalAlign="center"
HeaderText="Quantity">

<ItemTemplate>
<asp:Label id="labelQuantity" runat="server"

Text='<%# Eval("Quantity") %>'></asp:Label>
</ItemTemplate>

</asp:TemplateField>
<asp:TemplateField ItemStyle-HorizontalAlign="center"

ItemStyle-Width="25%" HeaderStyle-HorizontalAlign="center"
HeaderText="Unit Cost">

<ItemTemplate>
<asp:Label id="labelUnitPrice" runat="server"
Text='<%# Eval("UnitPrice" , "{0:c}")%>'>
</asp:Label>

</ItemTemplate>
</asp:TemplateField>

<asp:TemplateField ItemStyle-HorizontalAlign="center"
ItemStyle-Width="25%"

CHAPTER 20 ■ PROCESSING THE PAYMENT 405

7249ch20.qxd 11/13/06 9:23 PM Page 405

HeaderStyle-HorizontalAlign="center"
HeaderText="Subtotal">
<ItemTemplate>

<asp:Label id="labelTotalPrice" runat="server"
Text='<%# Eval("TotalPrice" , "{0:c}")%>'>
</asp:Label>

</ItemTemplate>
</asp:TemplateField>

</Columns>
</asp:GridView>

</td>
<td></td>

</tr>
<tr><td>
<img src="images/spacer.gif" width="1"

height="3" /></td></tr>
<tr>

<td></td>
<td class="prodUnderlineBG" width="100%">

</td>
<td></td>

</tr>
<tr>

<td></td>
<td class="prodUnderlineBG" width="100%">

</td>

<td></td>
</tr>

<tr><td>
<img src="images/spacer.gif" width="1"
height="5" /></td></tr>

<tr>
<td></td>
<td align="right">

<table border="0" cellpadding="2" cellspacing="0">
<tr>

<td>Subtotal:</td>
<td>
</td>
<td style="width: 69px;">
<asp:Label ID="labelSubTotal" runat="server"
Width="100%"></asp:Label></td>

</tr>
<tr>

<td>Tax:</td>

CHAPTER 20 ■ PROCESSING THE PAYMENT406

7249ch20.qxd 11/13/06 9:23 PM Page 406

<td></td>
<td><asp:Label ID="labelTax" runat="server"
Width="100%">
</asp:Label></td>

</tr>
<tr>

<td>Shipping:</td>
<td></td>

<td><asp:Label ID="labelShippingCost" runat="server"
Width="100%"></asp:Label></td>

</tr>
<tr><td><img src="images/spacer.gif" width="1"
height="1" /></td></tr>

<tr>
<td colspan="3" class="prodUnderlineBG">

</td>
</tr>
<tr><td><img src="images/spacer.gif" width="1"
height="1" /></td></tr>
<tr>
<td>Order Total:</td>
<td></td>
<td><asp:Label ID="labelTotal" runat="server"
Width="100%"></asp:Label></td>

</tr>
</table>

</td>
<td></td>

</tr>
</table>

<table border="0" cellpadding="0" cellspacing="3"
width="90%" align="Center">

<tr>
<td colspan="3">Shipping Information</td>

</tr>
<tr>

<td align="center" colspan="3">
<table cellpadding="0" cellspacing="0"

border="0" width="100%">
<tr>

<td width="100%" class="separatorBG">
<img src="images/spacer.gif" width="1" height="1"
border="0" /></td>
<td></td>

</tr>

CHAPTER 20 ■ PROCESSING THE PAYMENT 407

7249ch20.qxd 11/13/06 9:23 PM Page 407

</table>
</td>

</tr>
<tr><td>
<img src="images/spacer.gif" width="1"

height="3" /></td></tr>
<tr>

<td></td>
<td nowrap="nowrap">First Name:</td>

<td width="60%">
<asp:Label ID="labelFirstname"
runat="server"></asp:Label></td>

</tr>
<tr>

<td></td>
<td nowrap="nowrap">Last Name:</td>

<td>
<asp:Label ID="labelLastname" runat="server">
</asp:Label></td>

</tr>
<tr>

<td></td>
<td>Address:</td>

<td>
<asp:Label ID="labelAddress" runat="server">
</asp:Label></td>

</tr>
<tr>

<td></td>
<td nowrap="nowrap">Address 2:</td>

<td>
<asp:Label ID="labelAddress2" runat="server">
</asp:Label></td>

</tr>
<tr>

<td></td>
<td>City:</td>
<td><asp:Label ID="labelCity" runat="server"></asp:Label></td>

</tr>
<tr>

<td></td>
<td>State:</td>
<td><asp:Label ID="labelState" runat="server"></asp:Label></td>

</tr>
<tr>

<td></td>
<td nowrap="nowrap">Postal Code:</td>

CHAPTER 20 ■ PROCESSING THE PAYMENT408

7249ch20.qxd 11/13/06 9:23 PM Page 408

<td>
<asp:Label ID="labelPostalCode" runat="server">
</asp:Label></td>

</tr>
<tr>

<td></td>
<td nowrap="nowrap">Shipping Options:</td>
<td></td>

</tr>
<tr><td>
<img src="images/spacer.gif" width="1"
height="15" /></td></tr>

<tr>
<td colspan="3">Payment</td>

</tr>
<tr>

<td align="center" colspan="3">
<table cellpadding="0" cellspacing="0"

border="0" width="100%">
<tr>

<td width="100%" class="separatorBG">
<img src="images/spacer.gif" width="1"
height="1" border="0" /></td>
<td></td>
</tr>
</table>

</td>
</tr>

<tr><td>
<img src="images/spacer.gif" width="1"
height="3" /></td></tr>

<tr>
<td></td>
<td nowrap="nowrap">Credit Card:</td>

<td><asp:Label ID="labelCreditCardType" runat="server">
</asp:Label></td>

</tr>
<tr>

<td></td>
<td nowrap="nowrap">Credit Card Number:</td>

<td><asp:Label ID="labelCreditCardNumber" runat="server">
</asp:Label></td>

</tr>
<tr>

<td></td>
<td nowrap="nowrap">Security Code:</td>

<td><asp:Label ID="labelCreditCardSecurityCode" runat="server">

CHAPTER 20 ■ PROCESSING THE PAYMENT 409

7249ch20.qxd 11/13/06 9:23 PM Page 409

</asp:Label></td>
</tr>
<tr>

<td></td>
<td nowrap="nowrap">Expiration Date:</td>

<td><asp:Label ID="labelExpirationDate" runat="server">
</asp:Label></td>

</tr>
<tr><td>
<img src="images/spacer.gif" width="1"
height="15" /></td></tr>

<tr>
<td colspan="3">Billing Address</td>

</tr>
<tr>

<td align="center" colspan="3">
<table cellpadding="0" cellspacing="0"
border="0" width="100%">

<tr>
<td width="100%" class="separatorBG">
<img src="images/spacer.gif" width="1" height="1"
border="0" /></td>

<td></td>
</tr>

</table>
</td>

</tr>
<tr><td>
<img src="images/spacer.gif" width="1"
height="3" /></td></tr>

<tr>
<td></td>
<td>Address:</td>

<td><asp:Label ID="labelBillingAddress" runat="server">
</asp:Label></td>

</tr>
<tr>

<td></td>
<td nowrap="nowrap">Address 2:</td>

<td><asp:Label ID="labelBillingAddress2" runat="server">
</asp:Label></td>

</tr>
<tr>

<td></td>
<td>City:</td>

CHAPTER 20 ■ PROCESSING THE PAYMENT410

7249ch20.qxd 11/13/06 9:23 PM Page 410

<td>
<asp:Label ID="labelBillingCity" runat="server">
</asp:Label></td>

</tr>
<tr>

<td></td>
<td>State:</td>

<td>
<asp:Label ID="labelBillingState" runat="server">
</asp:Label></td>

</tr>
<tr>

<td></td>
<td nowrap="nowrap">Postal Code:</td>
<td><asp:Label ID="labelBillingPostalCode" runat="server">

</asp:Label></td>
</tr>

<tr><td>
<img src="images/spacer.gif" width="1"
height="15" /></td></tr>

<tr>
<td colspan="3" align="right">

<table cellpadding="3" cellspacing="0" border="0">
<tr>

<td><asp:Button ID="commandEdit" runat="server"
Text="Edit Information" Width="136px"
OnClick="commandEdit_Click"
CssClass="button" /></td>
<td><asp:Button ID="commandConfirm"
runat="server" OnClick="commandConfirm_Click"
Text="Confirm Payment" CssClass="button" />
</td>

</tr>
</table>
</td>

</tr>
<tr><td>

</td></tr>
</table>

</asp:Content>

How It Works

In the previously added HTML code, you have a series of labels, after the display of the shopping cart
display, that will be populated with the information that was entered by the user on the CheckOut.aspx
web page.

2. You’ll now turn attention to the C# code that will populate the information that the user can verify just
prior to officially submitting their payment. Here’s the code:

CHAPTER 20 ■ PROCESSING THE PAYMENT 411

7249ch20.qxd 11/13/06 9:23 PM Page 411

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;
using LittleItalyVineyard.Operational;

public partial class CheckOutConfirm : BasePage
{

protected void Page_Load(object sender , EventArgs e)
{

if (! Request.IsSecureConnection)
{

Response.Redirect(base.UrlBaseSSL);
}

if (! IsPostBack)
{

LoadShoppingCart();
LoadInformation();

}
}

private void LoadInformation()
{

labelFirstname.Text = base.CurrentEndUser.FirstName;
labelLastname.Text = base.CurrentEndUser.LastName;
labelAddress.Text = base.CurrentEndUser.Address.AddressLine;
labelAddress2.Text = base.CurrentEndUser.Address.AddressLine2;
labelCity.Text = base.CurrentEndUser.Address.City;
labelState.Text = base.CurrentEndUser.Address.State;
labelPostalCode.Text = base.CurrentEndUser.Address.PostalCode;

labelCreditCardType.Text = base.CurrentOrder.CreditCard.CardType;
labelCreditCardNumber.Text = base.CurrentOrder.CreditCard.Number;
labelCreditCardSecurityCode.Text = base.CurrentOrder.➥

CreditCard.SecurityCode;
labelExpirationDate.Text = base.CurrentOrder.CreditCard.➥

ExpMonth. ToString() + " / " +

CHAPTER 20 ■ PROCESSING THE PAYMENT412

7249ch20.qxd 11/13/06 9:23 PM Page 412

base.CurrentOrder.CreditCard.➥

ExpYear.ToString();

labelBillingAddress.Text = base.CurrentOrder.CreditCard.➥

Address.AddressLine;
labelBillingAddress2.Text = base.CurrentOrder.CreditCard.➥

Address.AddressLine2;
labelBillingCity.Text = base.CurrentOrder.CreditCard.➥

Address.City;
labelBillingState.Text = base.CurrentOrder.CreditCard.➥

Address.State;
labelBillingPostalCode.Text = base.CurrentOrder.CreditCard.➥

Address.PostalCode;

labelSubTotal.Text = string.Format("{0:c}" , ➥

base.CurrentOrder.SubTotal);
labelTax.Text = string.Format("{0:c}" , base.CurrentOrder.Tax);
labelShippingCost.Text = string.Format("{0:c}" , ➥

base.CurrentOrder.ShippingTotal);

labelTotal.Text = string.Format("{0:c}" , Convert.ToDecimal➥

(base.CurrentOrder.SubTotal) +
base.CurrentOrder.Tax +
base.CurrentOrder.ShippingTotal);

}

private void LoadShoppingCart()
{

LittleItalyVineyard.Common.ShoppingCart shoppingcart =➥

new LittleItalyVineyard.Common.ShoppingCart();
shoppingcart.CartGUID = Utilities.GetCartGUID();

ProcessGetShoppingCart processgetcart =➥

new ProcessGetShoppingCart();
processgetcart.ShoppingCart = shoppingcart;

try
{

processgetcart.Invoke();
gridviewShoppingCart.DataSource = processgetcart.ResultSet;
gridviewShoppingCart.DataBind();

}
catch
{

Response.Redirect("ErrorPage.aspx");
}

}

CHAPTER 20 ■ PROCESSING THE PAYMENT 413

7249ch20.qxd 11/13/06 9:23 PM Page 413

How It Works

The first task is to check whether the incoming request is being processed over a secure channel. If it
is not, the request will be redirected to the same location but with the secure connection. As mentioned,
during your development process, you might want to disable this code or comment it out because you
will probably not have an SSL certificate installed on your development machine. The remaining code
is similar to the code you added in previous exercises. You will load the shopping cart items and set the
labels for read-only display to that of the BasePage’s CurrentOrder class, which in fact is of the com-
mon type Orders.

3. After the information is displayed for the user to verify, you will present the user with two options. They
will be able to navigate to the CheckOut.aspx page or officially submit the information for payment. The
code is as follows:

protected void commandConfirm_Click(object sender , EventArgs e)
{

Product[] prods = new Product[gridviewShoppingCart.Rows.Count];

foreach (GridViewRow grow in gridviewShoppingCart.Rows)
{

if (grow.RowType == DataControlRowType.DataRow)
{

Product prod = new Product();

DataKey data = gridviewShoppingCart.DataKeys➥

[grow.DataItemIndex];

prod.ProductID = int.Parse➥

(data.Values["ProductID"].ToString());

Label labelProductName = (Label) grow.FindControl➥

("labelProductName");
prod.Name = labelProductName.Text;

Label labelQuantity = (Label) grow.FindControl➥

("labelQuantity");
prod.Quantity = int.Parse(labelQuantity.Text);

Label labelUnitPrice = (Label) grow.FindControl➥

("labelUnitPrice");
labelUnitPrice.Text = labelUnitPrice.Text.Replace➥

("$" , "");
prod.Price = Convert.ToDecimal(labelUnitPrice.Text);

prods.SetValue(prod , grow.DataItemIndex);
}

}

CurrentOrder.OrderDetails.Products = prods;

CHAPTER 20 ■ PROCESSING THE PAYMENT414

7249ch20.qxd 11/13/06 9:23 PM Page 414

// Order Total.
labelTotal.Text = labelTotal.Text.Replace("$" , "");
CurrentOrder.OrderTotal = Convert.ToDecimal(labelTotal.Text);
CurrentOrder.EndUserID = CurrentEndUser.EndUserID;

string URL = "CheckOutReceipt.aspx";
Response.Redirect("Loading.aspx?Page=" + URL);

}

protected void commandEdit_Click(object sender , EventArgs e)
{

// Navigate back to the previous page.
Response.Redirect("CheckOut.aspx");

}

How It Works

Redirecting the user to edit their information is quite simple. It is a standard Response.Redirect call to
the CheckOut.aspx web form. Now, the more detailed and extensive code to actually submit the pay-
ment to PayPal is contained in the Confirm button click event. This code begins by declaring the
common class, Product, as an array, which is set to the gridviewShoppingCart total rows. These are all
the products that the customer is going to purchase. You are using an array so the payment process
can be dynamic and the code can handle one product or many products via the array. You then popu-
late the product array with the details of each product by looping through each of the GridView rows
and finally officially adding each product with the details to the array by using the SetValue method.

At the conclusion of looping through the GridView rows, you will take the BasePage’s CurrentOrder
class and then the OrderDetails Product array and set it to the product array that was initially declared.
Finally, the total and EndUserID will be populated, and then the code will redirect the process to the
Loading.aspx web form, which I will discuss in more detail in the next exercise step.

4. As a result of the payment information being sent via a web service to the PayPal processing system,
the request may take several seconds and thus take the web page a little while to complete loading.
Since this is the case, you will implement a page that will inform the user that the payment is currently
being processed. When the payment submission is complete, you can redirect the user to a page that
indicates this. Given this information, add a new web form named Loading.aspx, but don’t associate it
with a master page since you do not want to display any links that could potentially allow the user to
navigate to another location. After adding the Loading.aspx web form, add the following HTML code as
well as some JavaScript:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Loading.aspx.cs"
Inherits="Loading"
Title="Untitled Page" %>

<html>
<head id="Head1" runat="server">

<title>Processing....</title>

CHAPTER 20 ■ PROCESSING THE PAYMENT 415

7249ch20.qxd 11/13/06 9:23 PM Page 415

<meta http-equiv="Content-Style-Type" content="text/css" />
<link href="Css/style.css" type="text/css" rel="stylesheet" />

<script language="javascript">
var LoopCounter = 1;
var MaxLoop = 5;
var IntervalId;

function BeginLoad()
{
location.href = "<%= Request.QueryString["Page"]%>";
IntervalId = window.setInterval("LoopCounter=UpdateProgress➥

(LoopCounter, MaxLoop)", 500);
}

function EndLoad()
{

window.clearInterval(IntervalId);
Progress.innerText = "Page Loaded -- Not Transferring";

}

function UpdateProgress(LoopCounter, MaxLoops)
{
LoopCounter += 1;

if (LoopCounter <= MaxLoops)
{
Progress.innerText += ".";
return LoopCounter;

}
else
{

Progress.innerText = "";
return 1;

}
}

</script>
</head>
<body onload="BeginLoad()" onunload="EndLoad()">

<form id="form1" runat="server">
<table width="100%" height="100%" border="0" cellpadding="0"

cellspacing="0"
style="background-image:
url(images/til_1.jpg);">

<tr>
<td> </td>
<td width="490" align="left" valign="top">

CHAPTER 20 ■ PROCESSING THE PAYMENT416

7249ch20.qxd 11/13/06 9:23 PM Page 416

<table width="490" border="0" cellspacing="0"
cellpadding="0">

<tr>
<td width="10"> </td>
<td width="470" align="left" valign="top">

<table width="470" height="100%" border="0"
cellpadding="0" cellspacing="0">
<tr>

<td height="164" align="left"
valign="top" background="images/top_1.jpg">
<div style="padding-left: 156px;
padding-top: 69px">
<img src="images/logo.jpg"
width="159"
height="36" border="0"></div>

</td>
</tr>
<tr>
<td height="172" align="right"

valign="top" background="images/back_1.jpg">
<div style="padding-left:
0px; padding-top: 14px; padding-right: 23px;
padding-bottom: 0px">

 </div>
</td>
</tr>
<tr>

<td height="100%" align="left" valign="top">
<table width="100%" height="100%"
border="0" cellpadding="0" cellspacing="0"
background="images/rep_3.jpg">

<tr align="left" valign="top">
<td background="images/rep_left.jpg"

style="width: 10px">
<img src="images/rep_left.jpg"

width="10" height="1"></td>
<td height="100%">
<table width="450" height="100%" border="0"

cellpadding="0" cellspacing="0">
<tr align="left" valign="top">

<td background="images/rep_line.jpg"
bgcolor="#F3E9BF"
style="background-repeat: repeat-y;

background-position: top left;">

<table border="0" cellpadding="0"

CHAPTER 20 ■ PROCESSING THE PAYMENT 417

7249ch20.qxd 11/13/06 9:23 PM Page 417

cellspacing="0" width="99%" height="99%"
align="center" valign="middle">
<tr>
<td align="center" valign="middle">

Processing Payment -- Please Wait

</td>
</tr>
</table>
</td>
</tr>
</table>

</td>
<td width="10"
background="images/rep_right.jpg">
<img src="images/rep_right.jpg"
width="10" height="1"></td>

</tr>
<tr>

<td colspan="3" valign="top" align="center">
<img src="images/bottom_1.jpg" width="470"
height="23"></td>

</tr>
</table>
</td>
</tr>

</table>
</td>
<td></td>

</tr>
</table>

</td>
<td> </td>

</tr>
<tr>

<td></td>
<td height="100%">

CHAPTER 20 ■ PROCESSING THE PAYMENT418

7249ch20.qxd 11/13/06 9:23 PM Page 418

<table cellpadding="0" cellspacing="0" border="0"
width="100%" height="100%">

<tr>
<td style="height: 100%; background-image:
url(images/rep_bot.jpg); background-repeat: repeat-y;
background-position: center;"></td>

</tr>
</table>

</td>
<td></td>

</tr>
</table>

</form>
</body>
</html>

How It Works

The HTML code you added is fairly straightforward. There is an animated GIF image, the text “Process-
ing Payment – Please Wait,” and most of the HTML from the master page with the exception of any of
the links. When you examine the JavaScript, you’ll see that this is where it gets quite interesting. The
JavaScript contains three functions: BeginLoad, EndLoad, and UpdateProgress. The BeginLoad method,
which is subsequently set within the onload method of the body of the page, initially sets the web page
that will be the final destination by using the Request.QueryString. After determining the destination
page, this will cause the delay when loading the destination page. During the submission, the
UpdateProgress method will be called and subsequently write a period to the text, giving an animation
effect. Finally, when the payment submission is returned and the destination page is completely loaded,
the page will be redirected to the destination and is able to be displayed.

5. No C# code accompanies the Loading.aspx web form, but now you need to add the
CheckOutReceipt.aspx web form and associate it with the respective master page. In this HTML, add
two separate panels that initially have the Visible property to false. One panel is for a successful pay-
ment submission, and the other is for a failure. Let’s look at the HTML code:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="CheckOutReceipt.aspx.cs"
Inherits="CheckOutReceipt"
Title="Little Italy Vineyard | Check Out Receipt" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<table border="0" cellpadding="0" cellspacing="0" width="100%">

<tr>
<td width="100%">

<asp:Panel ID="panelSuccess" runat="server" Height="100%"
Visible="False" Width="100%">

<table border="0" cellpadding="0" cellspacing="0"

CHAPTER 20 ■ PROCESSING THE PAYMENT 419

7249ch20.qxd 11/13/06 9:23 PM Page 419

width="100%">
<tr>

<td width="25%" style="text-align: center">
</td>

<td width="75%">
Your order has been processed

successfully.

Little Italy Vineyard thanks
you for your business.</td>

</tr>
<tr>

<td width="25%">
Transaction ID:</td>

<td width="75%">
<asp:Label ID="labelTransactionID"

runat="server"></asp:Label></td>
</tr>
<tr>

<td width="25%">
Order Total:</td>

<td width="75%">
<asp:Label ID="labelOrderTotal"

runat="server"></asp:Label></td>
</tr>

</table>
 </asp:Panel>

</td>
</tr>
<tr>

<td width="100%">
<asp:Panel ID="panelFailure" runat="server" Height="100%"
Visible="False" Width="100%">

<table border="0" cellpadding="0" cellspacing="0"
width="100%">

<tr>
<td width="25%" style="text-align: center">

</td>
<td width="75%">

We apologize for the inconvenience,
but an error occurred with the payment of

your order.

Error Message:</td>
</tr>
<tr>

CHAPTER 20 ■ PROCESSING THE PAYMENT420

7249ch20.qxd 11/13/06 9:23 PM Page 420

<td>
</td>
<td width="25%">

<asp:Label ID="labelErrorMessage"
runat="server"></asp:Label></td>

</tr>
</table>

</asp:Panel>
</td>

</tr>
</table>

</asp:Content>

How It Works

As mentioned, there are two panels: panelSuccess and panelFailure. You set both the Visible properties
to false. The panelSuccess panel has a small image of a check mark and some text informing the user
that the payment has been successful; it also displays the transaction ID and the order total. The
panelFailure panel has a small image of a red X and subsequently tells the user that the payment has
failed and why it failed.

6. You now need to add the associated C# code to the CheckOutReceipt.aspx web form that will officially
submit the order and payment information to PayPal. Upon the order and payment information being
submitted, the respective panel will be set to visible if the payment is successful or if there is a failure:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Operational;
using LittleItalyVineyard.BusinessLogic;

public partial class CheckOutReceipt : BasePage
{

protected void Page_Load(object sender , EventArgs e)
{

if (!IsPostBack)
{

SubmitOrder();
}

CHAPTER 20 ■ PROCESSING THE PAYMENT 421

7249ch20.qxd 11/13/06 9:23 PM Page 421

}

private void SubmitOrder()
{

PayPalManager paypal = new PayPalManager();
PayPalInformation _paypalinformation = new PayPalInformation();

_paypalinformation.Order = CurrentOrder;
paypal.ProcessDirectPayment(_paypalinformation);

if (paypal.IsSubmissionSuccess)
{

panelSuccess.Visible = true;
labelOrderTotal.Text = string.Format("{0:c}" , ➥

_paypalinformation.Order.OrderTotal);
labelTransactionID.Text = CurrentOrder.TransactionID;

}
else
{

panelFailure.Visible = true;
labelErrorMessage.Text = paypal.SubmissionError;

}
}

}

How It Works

The code begins with the SubmitOrder method where it instantiates the PayPalManager class from the
Operational namespace along with the PayPalInformation struct. The Order class from the struct is sub-
sequently populated with the CurrentOrder of the base page, and then the ProcessDirectPayment method
is called from the PayPalManager class, passing in the PayPalInformation struct as its parameter. This
line of code is what will take a few seconds to process. Upon the completion of the submission, the
IsSubmissionSuccess property will be checked, and if true, the paneSuccess will be shown along with
the transaction ID and order total. If the IsSubmissionSuccess property is false, the panelFailure will be
shown, and the SubmissionError property will be displayed along with the reason for the payment failure.

Now that you have completed the exercise to accept a payment for the merchandise, you have one final step to
add to the overall process.

Finalizing the Payment
You have completed the functionality to submit and process a payment to PayPal. There is
a final piece to add to the payment submission process—you need to add the completed order
to the database if in fact the payment is successful.

You’ll implement each of these remaining features in the forthcoming exercises.

CHAPTER 20 ■ PROCESSING THE PAYMENT422

7249ch20.qxd 11/13/06 9:23 PM Page 422

Exercise: Finalizing the Order

This exercise outlines all the steps to now insert the order and the order details into the database in the form of
a transaction. Follow these steps:

1. Begin at the database level to add two stored procedures, Order_Insert and OrderDetails_Insert:

CREATE PROCEDURE Order_Insert

@EndUserID int,
@TransactionID nvarchar(50)

AS

INSERT INTO Orders
(EndUserID,
TransactionID)
VALUES
(@EndUserID,
@TransactionID)

SELECT @@IDENTITY

CREATE PROCEDURE OrderDetails_Insert

@OrderID int,
@ProductID int,
@Quantity int

AS

INSERT INTO OrderDetails
(OrderID,
ProductID,
Quantity)
VALUES
(@OrderID,
@ProductID,
@Quantity)

2. Now add each of the stored procedure names to the StoredProcedure Name enumeration. You then
need to add two classes to the Insert folder in the LittleItalyVineyard.DataAccess class library. The two
classes are OrderInsertData and OrderDetailsInsertData:

using System;
using System.Collections.Generic;
using System.Text;

CHAPTER 20 ■ PROCESSING THE PAYMENT 423

7249ch20.qxd 11/13/06 9:23 PM Page 423

using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Insert
{

public class OrderInsertData : DataAccessBase
{

private Orders _orders;
private OrderInsertDataParameters _orderinsertdataparameters;

public OrderInsertData()
{

StoredProcedureName = StoredProcedure.Name.➥

Order_Insert.ToString();
}

public void Add(SqlTransaction transaction)
{

_orderinsertdataparameters =➥

new OrderInsertDataParameters(Orders);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
object id = dbhelper.RunScalar(transaction , ➥

_orderinsertdataparameters.Parameters);
Orders.OrderID = int.Parse(id.ToString());

}

public Orders Orders
{

get { return _orders; }
set { _orders = value; }

}
}

public class OrderInsertDataParameters
{

private Orders _orders;
private SqlParameter[] _parameters;

public OrderInsertDataParameters(Orders orders)
{

Orders = orders;
Build();

}

CHAPTER 20 ■ PROCESSING THE PAYMENT424

7249ch20.qxd 11/13/06 9:23 PM Page 424

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@EndUserID" , ➥

Orders.EndUserID) ,
new SqlParameter("@TransactionID" , ➥

Orders.TransactionID)
};

Parameters = parameters;
}

public Orders Orders
{

get { return _orders; }
set { _orders = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Insert
{

public class OrderDetailsInsertData : DataAccessBase
{

private OrderDetails _orderdetails;
private OrderDetailsInsertDataParameters ➥

_orderdetailsinsertdataparameters;

public OrderDetailsInsertData()
{

OrderDetails = new OrderDetails();
StoredProcedureName = StoredProcedure.Name.➥

CHAPTER 20 ■ PROCESSING THE PAYMENT 425

7249ch20.qxd 11/13/06 9:23 PM Page 425

OrderDetails_Insert.ToString();
}

public void Add(SqlTransaction transaction)
{

_orderdetailsinsertdataparameters = new➥

OrderDetailsInsertDataParameters➥

(OrderDetails);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
dbhelper.Run(transaction , ➥

_orderdetailsinsertdataparameters.Parameters);
}

public OrderDetails OrderDetails
{

get { return _orderdetails; }
set { _orderdetails = value; }

}
}

public class OrderDetailsInsertDataParameters
{

private OrderDetails _orderdetails;
private SqlParameter[] _parameters;

public OrderDetailsInsertDataParameters➥

(OrderDetails orderdetails)
{

OrderDetails = orderdetails;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@OrderID" , OrderDetails.OrderID) ,
new SqlParameter("@ProductID" , OrderDetails.ProductID) ,
new SqlParameter("@Quantity" , OrderDetails.Quantity)

};

Parameters = parameters;
}

public OrderDetails OrderDetails
{

CHAPTER 20 ■ PROCESSING THE PAYMENT426

7249ch20.qxd 11/13/06 9:23 PM Page 426

get { return _orderdetails; }
set { _orderdetails = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

How It Works

The two classes you added are similar to the others in the data access layer. At the same time, they
have a few slight differences. The first difference is with the Add method; it has a parameter of
a transaction that is passed in. In the next step of the exercise, the reasons for this will become more
apparent.

3. While you are still within the data access layer of the application, you now need to add a new folder
named Transaction, which will subsequently create a new namespace. In this new folder, you will add
two new classes, TransactionBase and OrderInsertTransaction. Let’s first look at the TransactionBase
class and its code and then the OrderInsertTransaction:

using System;
using System.Collections.Generic;
using System.Text;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;

namespace LittleItalyVineyard.DataAccess.Transaction
{

public class TransactionBase
{

protected SqlTransaction transaction = null;
protected SqlConnection connection = null;
protected SqlCommand command = null;

public TransactionBase()
{

connection = new SqlConnection(ConfigurationManager.➥

ConnectionStrings["SQLCONN"].ToString());
connection.Open();
command = connection.CreateCommand();

}
}

}

CHAPTER 20 ■ PROCESSING THE PAYMENT 427

7249ch20.qxd 11/13/06 9:23 PM Page 427

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Insert;

namespace LittleItalyVineyard.DataAccess.Transaction
{

public class OrderInsertTransaction : TransactionBase
{

public OrderInsertTransaction()
{

}

public void Begin(Orders orders)
{

command = connection.CreateCommand();
transaction = connection.BeginTransaction("OrderInsert");
command.Connection = connection;
command.Transaction = transaction;

OrderInsertData orderadd = new OrderInsertData();
OrderDetailsInsertData orderdetailsadd =➥

new OrderDetailsInsertData();

try
{

// Insert Order.
orderadd.Orders = orders;
orderadd.Add(transaction);

// Insert Order Details.
for (int i = 0 ; i < orders.OrderDetails.Products.Length ; i++)
{

orderdetailsadd.OrderDetails.OrderID = orders.OrderID;
orderdetailsadd.OrderDetails.ProductID =➥

orders.OrderDetails.Products[i].➥

ProductID;
orderdetailsadd.OrderDetails.Quantity =➥

orders.OrderDetails.Products[i].➥

Quantity;

orderdetailsadd.Add(transaction);
}

CHAPTER 20 ■ PROCESSING THE PAYMENT428

7249ch20.qxd 11/13/06 9:23 PM Page 428

transaction.Commit();
}
catch (Exception ex)
{

transaction.Rollback("OrderInsert");
throw ex;

}
}

}
}

How It Works

You first added the TransactionBase class that establishes the connection within the transaction.
After this is completed, you then implemented the OrderInsertTransaction, which will then inherit the
TransactionBase class. The Begin method is then added, which will take an Orders class as a parameter.
Immediately the transaction is set up by naming the transaction OrderInsert, and then it adds the order
to the database via the transaction. After the order is inserted, an order detail record is inserted for each
product that the OrderDetail class contains. All this activity is wrapped within a try/catch statement,
and if any activity is not successful, the transaction is rolled back. If all is successful, the transaction is
committed.

4. The next class to be added is within the business logic layer. Specifically, add a class named
ProcessAddOrder that has the following code:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Transaction;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessAddOrder : IBusinessLogic
{

private Orders _orders;

public ProcessAddOrder()
{

}

public void Invoke()
{

OrderInsertTransaction ordertransaction =➥

new OrderInsertTransaction();
ordertransaction.Begin(this.Orders);

}

CHAPTER 20 ■ PROCESSING THE PAYMENT 429

7249ch20.qxd 11/13/06 9:23 PM Page 429

public Orders Orders
{

get { return _orders; }
set { _orders = value; }

}
}

}

How It Works

The class added to the business logic layer is similar to the other business logic classes; the only dif-
ference is that the transaction class in the data access layer will be called upon. The Order class will
subsequently be passed into the Begin method.

5. Now return to the CheckOutReceipt.aspx web form. Add the following code within the section that will
occur only if there is a successful payment processed:

private void SubmitOrder()
{

PayPalManager paypal = new PayPalManager();
PayPalInformation _paypalinformation = new PayPalInformation();

_paypalinformation.Order = CurrentOrder;
paypal.ProcessDirectPayment(_paypalinformation);

// If payment successful - add Order to database and display.
if (paypal.IsSubmissionSuccess)
{

panelSuccess.Visible = true;
labelOrderTotal.Text = string.Format("{0:c}" , ➥

_paypalinformation.Order.OrderTotal);
labelTransactionID.Text = CurrentOrder.TransactionID;

ProcessAddOrder addorder = new ProcessAddOrder();
addorder.Orders = CurrentOrder;
try
{

addorder.Invoke();
}
catch
{
Response.Redirect("ErrorPage.aspx");

}
}
else
{

panelFailure.Visible = true;
labelErrorMessage.Text = paypal.SubmissionError;

}
}

CHAPTER 20 ■ PROCESSING THE PAYMENT430

7249ch20.qxd 11/13/06 9:23 PM Page 430

How It Works

The previous code has expanded upon the code you added earlier in the chapter. The new code to add
the order to the database contains the ProcessAddOrder class and sets the base page CurrentOrder object
to the ProcessAddOrder’s Orders property. Lastly, the Invoke method will be called and will execute the
entire process to add the order and the associated order details to the database.

You have finished the final exercise in this chapter, so you now have code in place to populate your database with
the information from the customer’s order.

Summary
Congratulations! You have enabled your application to accept payments for the products your
client is selling. This is a major accomplishment in the development process. Now that cus-
tomers have the ability to purchase products from your client’s company, you need to finalize
the overall development and add sections where the administrator cannot only manage the
products for sale but can also process the orders. In addition to the administrator’s needs, you
will also incorporate the customer account and allow users to view the status of the orders they
have placed. You will also give them the ability to log in and check the status of the order at
any time.

CHAPTER 20 ■ PROCESSING THE PAYMENT 431

7249ch20.qxd 11/13/06 9:23 PM Page 431

7249ch20.qxd 11/13/06 9:23 PM Page 432

Creating the Administrator’s
Control Panel

You’re approaching the finish line of the core development of your application—you have
arrived at the administrator’s control panel. This control panel is the password-protected seg-
ment of the application where the owners of Little Italy Vineyards (or anyone who has been
given permission) can alter content of the website. The administrator’s control panel will play
a vital role in the overall maintenance of the application. In this chapter, I’ll cover the following
functionality:

• Setting up the administrator’s area

• Creating the administrator login

• Creating a new product

• Updating an existing product

• Viewing the products in the catalog

Setting Up the Control Panel
The first task to address as you implement a complete administrator’s control panel is to return
to the Visual Studio 2005 solution and add the necessary files and configurations. The following
exercise shows how to perform the setup.

433

C H A P T E R 2 1

■ ■ ■

7249ch21.qxd 11/13/06 9:24 PM Page 433

Exercise: Performing the Visual Studio 2005 Setup

In this exercise, you will perform the necessary setup work for the application to have a secure administrator’s
control panel. Follow these steps:

1. You will need to add a new physical directory to your web project. To accomplish this, right-click the
web project, choose to add a new folder, and name the folder Admin, as shown in Figure 21-1.

Figure 21-1. The Admin folder

2. Now that you have added the Admin folder to the web project, you have to specify that this new direc-
tory is where the administrator section will be and secure it with forms authentication. You’ll add this
configuration to the Web.config file. Therefore, open the Web.config file, and add the following in the
System.Web tags:

<authentication mode="Forms">
<forms name="LITTLEITALYAUTH" loginUrl="~/Admin/Login.aspx"
protection="All" timeout="120" path="/">

</forms>
</authentication>
<authorization>

<allow users="*"/>
</authorization>

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL434

7249ch21.qxd 11/13/06 9:24 PM Page 434

How It Works

By adding the previous authentication to the web project’s Web.config file, you are enabling the secu-
rity in the Admin directory. At the same time that you are adding security to the Admin folder, you also
are specifying that you are opening the root of the web project to anonymous users by specifying the
<allow users="*"/> element.

3. You have the necessary configurations specified in the Web.config file, so now you need to return to
the Admin folder and begin building upon it. The first item to add to the Admin directory is a new
Web.config file. To accomplish this, right-click the Admin folder, and choose to add a new item. In the
Add New Item dialog box, choose Web Configuration File, and name it simply Web.config. Click the
Add button, and finally add the following to the Web.config file that you added:

<?xml version="1.0"?>
<configuration>

<appSettings/>
<connectionStrings/>
<system.web>

<authorization>
<deny users="?" />

</authorization>
</system.web>

</configuration>

How It Works

As mentioned, you have enabled the security for the Admin folder. However, by placing an additional
Web.config file in the Admin directory, the configurations in the Web.config file in the Admin directory
will override those in the root directory.

4. Now that all the configurations are in place for the administrator’s section, you need to add the necessary
web forms. Therefore, in the Admin folder, add the Login.aspx web form, and then add a new master page
named Admin.master. In the master page, add the following Hypertext Markup Language (HTML) code:

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="Admin.master.cs" Inherits="Admin_Admin" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Untitled Page</title>
<link href="../CSS/Style.css" type="text/css" rel="stylesheet">

</head>
<body style="text-align: center" background="../Images/til_1.jpg">

<form id="form1" runat="server">

<table border="0" cellpadding="0" cellspacing="0" width="90%">
<tr>

<td style="width: 100%; background-color:
#f3e9bf; text-align: center">
</td>

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 435

7249ch21.qxd 11/13/06 9:24 PM Page 435

</tr>
<tr>

<td style="width: 100%; background-color:
#f3e9bf; text-align: center">

<img border="0" height="36" src="../images/logo.jpg"
width="159" />

</td>

</tr>
<tr>

<td style="width: 100%; background-color:
#f3e9bf; text-align: center">

Administrative Control Panel</td>
</tr>
<tr>

<td style="width: 100%">
<div class="shadetabs">

<li runat="server" id="Products">

Products

</div>

</td>
</tr>
<tr>

<td style="width: 100%; text-align: center;">
<div style="background-color: #f3e9bf; width: 100%; text-align: center;

height: 205px;">
<asp:contentplaceholder id="contentplaceholderAdmin"

runat="server">
</asp:contentplaceholder>

</div>
</td>

</tr>
</table>

</form>
</body>
</html>

How It Works

The master page has added the logo to the top of the page with a label indicating that it’s the adminis-
trator’s control panel. You’ll also see a link that is styled as a tab that will allow for easy navigation
within the control panel.

These additions bring you to the conclusion of the first exercise in the chapter. All the necessary configurations are
in place, so you can move along to incorporating the login and eventually adding and editing the products within
the catalog.

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL436

7249ch21.qxd 11/13/06 9:24 PM Page 436

Creating the Administrator Login
As mentioned, you need to ensure that the administrator’s control panel is secure with
a password-protected login. This section of the chapter will show you how to implement
a login that is similar to the one you implemented in Chapter 19 when a new user registered
for an account or revisited the application to log in. However, the login for the administrator’s
control panel will restrict everyone except those with sufficient access to log in. The following
exercise shows how to implement the login.

Exercise: Implementing the Login

This exercise walks you through all the steps to implement a secure login for the administrators of the application.
Follow these steps:

1. Start at the database level, and create the stored procedure that will query the user according to the
username and password entered:

CREATE PROCEDURE AdminLogin_Select

@Email nvarchar(50),
@Password nvarchar(50)

AS

SELECT EndUserID,
EndUserTypeID,
FirstName,
LastName,
EndUser.AddressID,
EndUser.ContactInformationID,
Password,
IsSubscribed,
Phone,
Phone2,
Fax,
Email
FROM EndUser
INNER JOIN ContactInformation ON
ContactInformation.ContactInformationID = enduser.ContactInformationID
WHERE Email = @Email
AND Password = @Password
AND EndUserTypeID = 2

2. After executing the stored procedure script, add the name of the stored procedure to the Name enu-
meration in the StoredProcedure class in the data access layer. With that complete, you can add the
classes that the data access portion of the architecture needs. Proceed to the LittleItalyVineyard.
DataAccess class library project and then to the Select directory and namespace. Add a new class
named AdminLoginSelectData with the following code:

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 437

7249ch21.qxd 11/13/06 9:24 PM Page 437

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class AdminLoginSelectData : DataAccessBase
{

private EndUser _enduser;

public AdminLoginSelectData()
{

StoredProcedureName = StoredProcedure.Name.➥

AdminLogin_Select.ToString();
}

public DataSet Get()
{

DataSet ds;

AdminLoginSelectDataParameters➥

_adminselectdataparameters =➥

new AdminLoginSelectDataParameters(EndUser);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString ,➥

adminselectdataparameters.Parameters);

return ds;
}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}
}

public class AdminLoginSelectDataParameters
{

private EndUser _enduser;
private SqlParameter[] _parameters;

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL438

7249ch21.qxd 11/13/06 9:24 PM Page 438

public AdminLoginSelectDataParameters(EndUser enduser)
{

EndUser = enduser;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@Email" ,➥

EndUser.ContactInformation.Email) ,
new SqlParameter("@Password" , EndUser.Password)

};

Parameters = parameters;
}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

How It Works

The previous code is similar to the other data access layer classes you added. A DataSet will be
returned from the EndUser class and is passed with the credentials.

3. Proceed to the business logic tier and to the LittleItalyVineyard.BusinessLogic class library. Add a new
class named ProcessAdminLogin. Then add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 439

7249ch21.qxd 11/13/06 9:24 PM Page 439

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessAdminLogin : IBusinessLogic
{

private EndUser _enduser;
private DataSet _resultset;
private bool _isauthenticated;

public ProcessAdminLogin()
{

}

public void Invoke()
{

AdminLoginSelectData adminlogin = new AdminLoginSelectData();
adminlogin.EndUser = this.EndUser;
ResultSet = adminlogin.Get();

if (ResultSet.Tables[0].Rows.Count != 0)
{

IsAuthenticated = true;
}
else
{

IsAuthenticated = false;
}

}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}

public bool IsAuthenticated
{

get { return _isauthenticated; }
set { _isauthenticated = value; }

}
}

}

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL440

7249ch21.qxd 11/13/06 9:24 PM Page 440

How It Works

The business logic class will pass the EndUser class into the data access layer. As a result, the DataSet
named ResultSet will be returned, which will then be analyzed to see whether there are any rows within
the DataSet; this will result in a match being made by the credentials being passed to those in the database
and in subsequently authenticating the user.

4. Now move to the presentation tier of the architecture and to the Login.aspx web form you created in
the Admin folder. Add the following HTML code to the Login.aspx web form, and notice that you are not
going to use a master page for this web form:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Login.aspx.cs" Inherits="Admin_Login" %>

<html>
<head id="Head1" runat="server">

<title>Admin Log In</title>
<meta http-equiv="Content-Style-Type" content="text/css" />
<link href="../Css/style.css" type="text/css" rel="stylesheet" />

</head>
<body>

<form id="form1" runat="server">
<table width="100%" height="100%" border="0" cellpadding="0"
cellspacing="0" style="background-image: url(../images/til_1.jpg);">

<tr>
<td> </td>
<td width="490" align="left" valign="top">
<table width="490" border="0" cellspacing="0" cellpadding="0">
<tr>
<td width="10"> </td>
<td width="470" align="left" valign="top">

<table width="470" height="100%" border="0"
cellpadding="0" cellspacing="0">

<tr>
<td height="164" align="left" valign="top"

background="../images/top_1.jpg">
<div style="padding-left: 156px; padding-top: 69px">

<img src="../images/logo.jpg" width="159" height="36"
border="0">

 </div>

</td>
</tr>

<tr>
<td height="172" align="right" valign="top"

background="../images/back_1.jpg">
<div style="padding-left: 0px; padding-top: 14px;

padding-right: 23px; padding-bottom: 0px">
 </div>

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 441

7249ch21.qxd 11/13/06 9:24 PM Page 441

</td>
</tr>
<tr>
<td height="100%" align="left" valign="top">
<table width="100%" height="100%" border="0"
cellpadding="0" cellspacing="0"

background="../images/rep_3.jpg">
<tr align="left" valign="top">

<td background="../images/rep_left.jpg" style="width: 10px">

</td>

<td height="100%">
<table width="450" height="100%" border="0"

cellpadding="0" cellspacing="0">
<tr align="left" valign="top">
<td background="../images/rep_line.jpg"

bgcolor="#F3E9BF" style="background-repeat: repeat-y;
background-position: top left; text-align: center;">

Administrator Control Panel Log In

<table border="0" cellpadding="0" cellspacing="0"

width="99%" height="99%" align="center" valign="middle">
<tr>
<td align="center" valign="top">

<table border="0" cellpadding="3" cellspacing="0"
style="width: 360px">

<tr>
<td style="width: 28px">

</td>
</tr>

<tr>
<td style="width: 28px">
</td>
<td>
Username:</td>
<td>

<asp:TextBox ID="textUsername" runat="server" CssClass="textField">
</asp:TextBox>

<asp:RequiredFieldValidator ID="requiredUsername" runat="server"
ControlToValidate="textUsername"
Display="Dynamic" EnableClientScript="False"
ErrorMessage="Username required."
Width="152px"></asp:RequiredFieldValidator></td>

</tr>

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL442

7249ch21.qxd 11/13/06 9:24 PM Page 442

<tr>
<td style="width: 28px">
</td>

<td>
Password:</td>

<td>
<asp:TextBox ID="textPassword" runat="server"
CssClass="textField" TextMode="Password">
</asp:TextBox>

<asp:RequiredFieldValidator ID="requiredPassword" runat="server"
ControlToValidate="textPassword"
Display="Dynamic" EnableClientScript="False"
ErrorMessage="Password required."
Width="152px"></asp:RequiredFieldValidator></td>

</tr>
<tr>
<td colspan="2">
</td>
<td>

<asp:Button ID="commandLogin" runat="server"
CssClass="button" OnClick="commandLogin_Click"
Text="Login" /></td>
</tr>
<tr>
<td colspan="2">
</td>
<td>
<asp:Label ID="labelMessage" runat="server">
</asp:Label></td>

</tr>
</table>
</td>

</tr>
</table>

</td>
</tr>
</table>
</td>
<td width="10" background="../images/rep_right.jpg">

</td>

</tr>
<tr>

<td colspan="3" valign="top" align="center">
<img src="../images/bottom_1.jpg" width="470"
height="23"></td>

</tr>

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 443

7249ch21.qxd 11/13/06 9:24 PM Page 443

</table>
</td>

</tr>
</table>

</td>
<td></td>

</tr>
</table>

</td>
<td> </td>

</tr>
<tr>

<td></td>
<td height="100%">

<table cellpadding="0" cellspacing="0" border="0"
width="100%" height="100%">

<tr>
<td style="height: 100%;
background-image: url(../images/rep_bot.jpg);
background-repeat: repeat-y; background-position: center;">
</td>
</tr>

</table>
</td>

<td></td>
</tr>
</table>

</form>
</body>
</html>

How It Works

The HTML code you have added is not overly complex. It specifies two text boxes, a command button,
and validation controls.

5. For the final step within this exercise, you’ll add the code to the login form that takes the username
and password entered by the user and eventually compares that to the information in the database.
Add the following code to the Login.aspx web form:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL444

7249ch21.qxd 11/13/06 9:24 PM Page 444

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;

public partial class Admin_Login : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

textUsername.Focus();
}

protected void commandLogin_Click(object sender , EventArgs e)
{

if (IsValid)
{

EndUser enduser = new EndUser();
ProcessAdminLogin processlogin = new ProcessAdminLogin();

enduser.ContactInformation.Email = textUsername.Text;
enduser.Password = textPassword.Text;
processlogin.EndUser = enduser;

try
{

processlogin.Invoke();

if (processlogin.IsAuthenticated)
{

FormsAuthentication.RedirectFromLoginPage➥

(textUsername.Text , false);
}
else
{

labelMessage.Text = "Invalid login!";
}

}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

}
}

}

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 445

7249ch21.qxd 11/13/06 9:24 PM Page 445

How It Works

The previous code you added to the Login.aspx web form checks that the page is valid, or in other words
that all the validation controls have evaluated all the information and will allow the process to continue.
Upon the IsValid property being true, an EndUser class and the business logic (the ProcessAdminUser
classes) are instantiated. The EndUser class has both the Email and Password properties populated
with the input that is entered by the user. Finally, within a try/catch statement, the Invoke() method is
called, and then the IsAuthenticated property is checked. If this is true, the user is redirected to the
location that is specified within the Web.config file and the forms authentication. If the IsAuthenticated
property is false, the login is not valid, and therefore a message is displayed to the user. If an error
occurs during this process, the user is redirected to the error page that is specified within the catch
part of the try/catch statement.

You have arrived at the end of the exercise, so you have a working login for the administrators of the application.

Creating a New Product
At this point, you have the initial workings of what will eventually be a fully featured administra-
tor control panel. Thus far, you have implemented the necessary structure and configurations,
along with a secure login. The next functionality to implement within the administrator’s con-
trol panel is to add products to the catalog. This will be a vital piece of the administrator’s
capabilities. Throughout the life of the application, the administrator will have to continually
add products to the catalog and change and update information.

Exercise: Adding a Product to the Catalog

This exercise shows how to add a product to the product catalog and thus allow the customers to browse and (you
hope) make numerous purchases. Follow these steps:

1. As you might have guessed, you will begin the exercise at the database and create the stored procedure
that will be required. It is evident that you will need a script that will insert the information in the Products
table in the database and that will associate the product image. Let’s look at the following script:

CREATE PROCEDURE Product_Insert

@ProductCategoryID int,
@ProductName nvarchar(50),
@ProductImage image,
@Description text,
@Price smallmoney

AS

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL446

7249ch21.qxd 11/13/06 9:24 PM Page 446

--Start the transaction
BEGIN TRANSACTION

DECLARE @ProductImageID int

INSERT INTO ProductImages
(ProductImage)
VALUES
(@ProductImage)

-- Roll back the transaction if there were any errors
IF @@ERROR <> 0
BEGIN

-- Rollback the transaction
ROLLBACK

-- Raise an error and return
RAISERROR ('Error INSERT INTO ProductImage.', 16, 1)
RETURN

END

SET @ProductImageID = @@IDENTITY

INSERT INTO Products
(ProductCategoryID,
ProductName,
ProductImageID,
Description,
Price)
VALUES
(@ProductCategoryID,
@ProductName,
@ProductImageID,
@Description,
@Price)

-- Roll back the transaction if there were any errors
IF @@ERROR <> 0
BEGIN

-- Rollback the transaction
ROLLBACK

-- Raise an error and return
RAISERROR ('Error INSERT INTO Products', 16, 1)
RETURN

END

COMMIT

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 447

7249ch21.qxd 11/13/06 9:24 PM Page 447

How It Works

The Product_Insert stored procedure inserts information across two tables. As a result of this, the
scripts are wrapped within a transaction by first inserting the image data into the ProductImages table
and then utilizing the @@IDENTITY variable to retrieve the last ID entered so that it can subsequently
be entered in the Products table. If an error occurs at any point, the transaction is rolled back to its
original state. If no errors are encountered, the transaction is committed.

2. Following in a similar trend, you will move along to the data access tier of the architecture and add the
necessary code. First add the new stored procedure name to the Name enumeration, and then add
a new class to the LittleItalyVineyard.DataAccess class library project within the Insert folder named
ProductInsertData. Upon successfully adding the new class, add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Insert
{

public class ProductInsertData : DataAccessBase
{

private Product _product;
private ProductInsertDataParameters ➥

_productinsertdataparameters;

public ProductInsertData()
{

StoredProcedureName = StoredProcedure.Name.Product_Insert.➥

ToString();
}

public void Add()
{

_productinsertdataparameters =➥

new ProductInsertDataParameters(Product);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
dbhelper.Parameters = _productinsertdataparameters.➥

Parameters;
dbhelper.Run();

}

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL448

7249ch21.qxd 11/13/06 9:24 PM Page 448

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

public class ProductInsertDataParameters
{

private Product _product;
private SqlParameter[] _parameters;

public ProductInsertDataParameters(Product product)
{

Product = product;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@ProductCategoryID", ➥

Product.ProductCategoryID) ,
new SqlParameter("@ProductName" , Product.Name) ,
new SqlParameter("@ProductImage" , Product.ImageData) ,
new SqlParameter("@Description" , Product.Description) ,
new SqlParameter("@Price" , Product.Price)

};

Parameters = parameters;
}

public Product Product
{

get { return _product; }
set { _product = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 449

7249ch21.qxd 11/13/06 9:24 PM Page 449

How It Works

In the code added to the data access layer, you stay true to form in that you specify the name of the
stored procedure followed by the standard method named Add. You then pair this class with the asso-
ciated parameters class for finalization.

3. The next step is to proceed to the business logic tier of the application. This is similar to the other code
you have incorporated into the application within the business logic. Specifically, add the following in
a new class named ProcessAddProduct:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Insert;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessAddProduct : IBusinessLogic
{

private Product _product;

public ProcessAddProduct()
{

}

public void Invoke()
{

ProductInsertData productdata = new ProductInsertData();
productdata.Product = this.Product;
productdata.Add();

}

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

}

How It Works

The previous code implements the Invoke() method from which the code in the data access layer is
called and implemented. A Product class is declared as a property, which will allow it to be populated
from the calling code.

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL450

7249ch21.qxd 11/13/06 9:24 PM Page 450

4. Typically at this point in exercises, you would proceed to the presentation tier of the application and
add the necessary HTML code as well as the C# code. However, since you are going to have different
categories for each of the products, you will need to first address that issue. Therefore, identify each of
the categories, and insert them into the database. Say that you have determined you have the follow-
ing categories:

• Appetizer Wines

• White Wines

• Rose Wines

• Sparkling Wines

• Red Wines

• Desert Wines

• Glasses

• Accessories

Now that you have identified the individual category names, add each of them to the ProductCategory
table by executing the following scripts:

INSERT INTO ProductCategory(ProductCategoryName) VALUES('Appetizer Wine')
INSERT INTO ProductCategory(ProductCategoryName) VALUES('White Wine')
INSERT INTO ProductCategory(ProductCategoryName) VALUES('Rose Wine')
INSERT INTO ProductCategory(ProductCategoryName) VALUES('Red Wine')
INSERT INTO ProductCategory(ProductCategoryName) VALUES('Desert Wine')
INSERT INTO ProductCategory(ProductCategoryName) VALUES('Glasses')
INSERT INTO ProductCategory(ProductCategoryName) VALUES('Accessories')

5. The individual product categories are populated within the database; therefore, the next step is to create
a new stored procedure that will select all these categories. Execute the following within the database:

CREATE PROCEDURE ProductCategory_Select

AS

SELECT ProductCategoryID,
ProductCategoryName
FROM ProductCategory

6. Moving along, add the name of the new stored procedure, ProductCategory_Select, to the Name enumer-
ation within the StoredProcedure class. Next, add a new class to the LittleItalyVineyard.DataAccess class
library project within the Select folder named ProductCategorySelectData, and add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 451

7249ch21.qxd 11/13/06 9:24 PM Page 451

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductCategorySelectData : DataAccessBase
{

public ProductCategorySelectData()
{

base.StoredProcedureName = StoredProcedure.Name.➥

ProductCategory_Select.ToString();
}

public DataSet Get()
{

DataSet ds;

DataBaseHelper dbhelper = new DataBaseHelper➥

(base.StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString);

return ds;
}

}
}

How It Works

The previous is standard code following the pattern you have established within the architecture. After
the stored procedure name is declared, a DataSet is then returned from the Get method that will ulti-
mately return a listing of the product categories.

7. The next step is to add the business logic class named ProcessGetProductCategory. With that said, add
this as a new class to the LittleItalyVineyard.BusinessLogic class library, and add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetProductCategory : IBusinessLogic
{

private DataSet _resultset;
public ProcessGetProductCategory()
{

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL452

7249ch21.qxd 11/13/06 9:24 PM Page 452

}

public void Invoke()
{

ProductCategorySelectData productcategorydata =➥

new ProductCategorySelectData();
ResultSet = productcategorydata.Get();

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

How It Works

Nothing is all that different within the business logic class and code that has been added. The Invoke()
method is declared, which will call upon the data access code.

8. At this point within the exercise, you have everything implemented that is necessary to move along to
the presentation tier and the web form itself. So, add a new web form to the Admin directory in the
web project named AddProduct.aspx, and associate it with the Admin.master page you created earlier
in the chapter. Add the following HTML code to the new web form:

<%@ Page Language="C#" MasterPageFile="~/Admin/Admin.master"
AutoEventWireup="true" CodeFile="AddProduct.aspx.cs"
Inherits="Admin_AddProduct" Title="
Admin Control Panel | Add Product " %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderAdmin"
Runat="Server">

<table border="0" cellpadding="0" cellspacing="0" style="width: 432px">

<tr>
<td style="width: 100px">

Product Name:</td>
<td style="width: 100px">

<asp:TextBox ID="textProductName" runat="server"
CssClass="textField"></asp:TextBox>

<asp:RequiredFieldValidator ID="requireName" runat="server"
ErrorMessage="Product name required."
ControlToValidate="textProductName" Display="Dynamic"
EnableClientScript="False" Width="160px">
</asp:RequiredFieldValidator></td>

</tr>

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 453

7249ch21.qxd 11/13/06 9:24 PM Page 453

<tr>
<td style="width: 100px">

Category:</td>
<td style="width: 100px">

<asp:DropDownList ID="dropdownlistCategory" runat="server"
CssClass="textField">
</asp:DropDownList></td>

</tr>
<tr>

<td style="width: 100%; height: 124px;">
</td>
<td style="width: 100%; height: 124px;">

<asp:TextBox ID="textDescription" runat="server"
Height="136px" TextMode="MultiLine"

Width="100%"></asp:TextBox>
</td>

</tr>
<tr>

<td style="width: 100px">
Price:</td>

<td style="width: 100px">
<asp:TextBox ID="textPrice" runat="server" CssClass="textField">
</asp:TextBox>
<asp:RequiredFieldValidator ID="requirePrice" runat="server"
ErrorMessage="Price required." ControlToValidate="textPrice"
Display="Dynamic" EnableClientScript="False">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td style="width: 100px; height: 22px">
Image:</td>

<td style="width: 100px; height: 22px">
<asp:FileUpload ID="fileuploadImage" runat="server"
Width="320px" CssClass="textField" /></td>

</tr>
<tr>

<td style="width: 100px">
</td>
<td style="width: 100px">
</td>

</tr>
<tr>

<td style="width: 100px">
</td>
<td style="width: 100px">

 <table border="0" cellpadding="0" cellspacing="0">
<tr>

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL454

7249ch21.qxd 11/13/06 9:24 PM Page 454

<td style="width: 100px">
<asp:Button ID="commandAdd" runat="server"
OnClick="commandAdd_Click" Text="Add Product"
CssClass="button" /></td>

<td style="width: 58px">
<asp:Button ID="commandCancel" runat="server"
Text="Cancel" CausesValidation="False"
OnClick="commandCancel_Click"

CssClass="button" /></td>
</tr>

</table>
</td>
<td style="width: 100px">
</td>

</tr>
</table>

</asp:Content>

How It Works

The AddProduct.aspx web form adds a series of controls to the page that will capture the information
that the user enters when adding a new product and that will provide the necessary validation.

9. Proceed to the code section of the AddProduct.aspx web form. Set the focus to the first text box on the
page, and then call a method to populate the different category choices within the DropDownList control.
Here’s the code:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;

public partial class Admin_AddProduct : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

if (!IsPostBack)
{

textProductName.Focus();

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 455

7249ch21.qxd 11/13/06 9:24 PM Page 455

LoadCategories();
}

}

private void LoadCategories()
{

ProcessGetProductCategory processgetcategory =➥

new ProcessGetProductCategory();

try
{

processgetcategory.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

dropdownlistCategory.DataTextField = "ProductCategoryName";
dropdownlistCategory.DataValueField = "ProductCategoryID";
dropdownlistCategory.DataSource = processgetcategory.ResultSet;
dropdownlistCategory.DataBind();

}

protected void commandCancel_Click(object sender , EventArgs e)
{

Response.Redirect("Products.aspx");
}

}

How It Works

The code added accomplishes two separate tasks. First it sets the focus to the textProductName text
box within the page load event, and then it populates the category drop-down list. You accomplish this
by implementing the LoadCategories method that will call upon the code within the business logic and
data access layers that were previously addressed.

10. To complete the exercise and fully implement the ability for an administrator to add a product to the
catalog, you will address the code needed to insert data or cancel the process. Place the following
code within the commandAdd button’s click event:

protected void commandAdd_Click(object sender , EventArgs e)
{

if (IsValid)
{

ProcessAddProduct addproduct = new ProcessAddProduct();
Product prod = new Product();

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL456

7249ch21.qxd 11/13/06 9:24 PM Page 456

prod.ProductCategoryID = int.Parse(dropdownlistCategory.➥

SelectedItem.Value);
prod.Name = textProductName.Text;
prod.Description = textDescription.Text;
prod.ImageData = fileuploadImage.FileBytes;
prod.Price = Convert.ToDecimal(textPrice.Text);
addproduct.Product = prod;

try
{

addproduct.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

Response.Redirect("Products.aspx");
}

}

How It Works

The code you added to the AddProduct.aspx web form allows an administrator to add a product to the
catalog. A Product class will be instantiated and subsequently populated with the entered product informa-
tion from the administrator. Finally, the Invoke() method will be called from the ProcessAddProduct
class within the business logic layer, and upon success, execution will then redirect the user to the
main products page where they can view the newly added product. Note, however, that you’ll add the
Products.aspx web form later in this chapter, and all the functionality from this chapter will come fully
together then.

With this final implementation of code, you have a fully operational section of the administrator’s control panel that
will allow you to add products to the catalog.

Updating a Product
The functionality for the administrator’s control panel is shaping up quite nicely thus far. How-
ever, you still need some additional functionality. In the following exercise, you will begin to
add new functionality that will allow you to edit and update an existing product in the catalog.

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 457

7249ch21.qxd 11/13/06 9:24 PM Page 457

Exercise: Implementing Product Update Functionality

In this exercise, you will create the functionality to take an existing product from the catalog and allow the admin-
istrator to make alterations and finally save the new updates. Follow these steps:

1. First create the necessary stored procedure that will take the information and update the product from
the user’s input:

CREATE PROCEDURE Product_Update

@ProductCategoryID int,
@ProductName nvarchar(50),
@ProductImageID int,
@ProductImage image,
@Description text,
@Price smallmoney,
@ProductID int

AS

--Start the transaction
BEGIN TRANSACTION

UPDATE ProductImages
SET ProductImage = @ProductImage
WHERE ProductImageID = @ProductImageID

-- Roll back the transaction if there were any errors
IF @@ERROR <> 0
BEGIN

-- Roll back the transaction
ROLLBACK

-- Raise an error and return
RAISERROR ('Error UPDATE ProductImage.', 16, 1)
RETURN

END

UPDATE Products
SET ProductCategoryID = @ProductCategoryID,
ProductName = @ProductName,
ProductImageID = @ProductImageID,
Description = @Description,
Price = @Price
WHERE ProductID = @ProductID

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL458

7249ch21.qxd 11/13/06 9:24 PM Page 458

-- Roll back the transaction if there were any errors
IF @@ERROR <> 0
BEGIN

-- Roll back the transaction
ROLLBACK

-- Raise an error and return
RAISERROR ('Error UPDATE Products', 16, 1)
RETURN

END

COMMIT

How It Works

When updating a product within the database, the information spans two tables. These tables are the
Products and ProductImages tables. As a result of the information spanning multiple tables, you use
a transaction. If an error is encountered, the entire process or transaction is rolled back to its original
state. On the other hand, if no errors occur, the information is committed to the database.

2. The stored procedure is now in place. Add the name of the newly created stored procedure to the
Name enumeration within the StoreProcedure class. Next, proceed to the LittleItalyVineyard.DataAccess
class library and then to the Update folder and namespace. Create a new class here named
ProductUpdateData, and add the following code to the class:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Update
{

public class ProductUpdateData : DataAccessBase
{

private Product _product;
private ProductUpdateDataParameters➥

_productupdatedataparameters;

public ProductUpdateData()
{

StoredProcedureName = StoredProcedure.Name.➥

Product_Update.ToString();
}

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 459

7249ch21.qxd 11/13/06 9:24 PM Page 459

public void Update()
{

_productupdatedataparameters =➥

new ProductUpdateDataParameters➥

(Product);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
dbhelper.Parameters =➥

_productupdatedataparameters.Parameters;
dbhelper.Run();

}

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

public class ProductUpdateDataParameters
{

private Product _product;
private SqlParameter[] _parameters;

public ProductUpdateDataParameters(Product product)
{

Product = product;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{
new SqlParameter("@ProductCategoryID" , ➥

Product.ProductCategoryID) ,
new SqlParameter("@ProductName" , Product.Name) ,
new SqlParameter("@ProductImageID" , Product.ImageID) ,
new SqlParameter("@ProductImage" , Product.ImageData) ,
new SqlParameter("@Description" , Product.Description) ,
new SqlParameter("@Price" , Product.Price) ,
new SqlParameter("@ProductID" , Product.ProductID)

};

Parameters = parameters;
}

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL460

7249ch21.qxd 11/13/06 9:24 PM Page 460

public Product Product
{

get { return _product; }
set { _product = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

How It Works

This code establishes the name of the stored procedure and implements the Update method,
which will execute the stored procedure with the subsequent parameters that are built in the
ProductUpdateDataParameters class.

3. Moving along, you can now address the business logic code by adding a new class named
ProcessUpdateProduct to the LittleItalyVineyard.BusinessLogic class library:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Update;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessUpdateProduct : IBusinessLogic
{
private Product _product;

public ProcessUpdateProduct()
{

}

public void Invoke()
{

ProductUpdateData productdata = new ProductUpdateData();
productdata.Product = this.Product;
productdata.Update();

}

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 461

7249ch21.qxd 11/13/06 9:24 PM Page 461

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

}

How It Works

The business logic code establishes a Product class that will be populated from the calling code. This
Product class will then be submitted to the data access code from within the Invoke() method.

4. You can now proceed to the presentation portion and to the web form itself. Within the web project,
add a new web form to the Admin directory named EditProduct.aspx. When adding this web form,
associate it to the Admin.master page, and add the following HTML code:

<%@ Page Language="C#" MasterPageFile="~/Admin/Admin.master"
AutoEventWireup="true" CodeFile="EditProduct.aspx.cs"
Inherits="Admin_EditProduct" Title="
Admin Control Panel | Edit Product " %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderAdmin"
Runat="Server">
<table cellSpacing="0" cellPadding="0" width="100%" border="0"
style="height: 362px">

<tr>
<td colSpan="2">

</td>
</tr>
<tr>

<td vAlign="top" style="width: 21px">

</td>
<td vAlign="top" align="left">

<table height="100%" cellSpacing="0" cellPadding="0"
width="620" align="left" border="0">

<tr vAlign="top">
<td>

 <table cellSpacing="0" cellPadding="0"
width="100%" border="0">

<tr>
<td class="ContentHead" style="width: 60px; height: 13px">

Name:</td>
<td class="ContentHead" style="height: 13px">

<asp:TextBox ID="textName" runat="server"

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL462

7249ch21.qxd 11/13/06 9:24 PM Page 462

CssClass="textField"></asp:TextBox>
<asp:RequiredFieldValidator ID="requireName"
runat="server" ErrorMessage="Product name required."
ControlToValidate="textName" Display="Dynamic"
EnableClientScript="False">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td class="ContentHead" style="width: 60px">
Description:

</td>
<td class="ContentHead">

<asp:TextBox ID="textDescription" runat="server" Height="104px"
TextMode="MultiLine"

Width="352px" CssClass="textField"></asp:TextBox></td>
</tr>
<tr>

<td class="ContentHead" style="width: 60px; height: 24px;">
Price:</td>

<td class="ContentHead"
style="height: 24px">
<asp:TextBox ID="textPrice" runat="server" CssClass="textField">
</asp:TextBox>
<asp:RequiredFieldValidator ID="requirePrice" runat="server"
ErrorMessage="Price Required." ControlToValidate="textPrice"
Display="Dynamic" EnableClientScript="False">
</asp:RequiredFieldValidator></td>

</tr>
<tr>

<td class="ContentHead" style="width: 60px">
Category:</td>

<td class="ContentHead">
<asp:DropDownList ID="dropdownlistCategory"

runat="server" CssClass="textField">
</asp:DropDownList></td>

</tr>
<tr>

<td class="ContentHead" style="width: 60px">
Image:</td>

<td class="ContentHead">
<asp:Image ID="imageProductDetail" runat="server"
BorderColor="#92775C" BorderStyle="Double"

BorderWidth="3px" Width="100px" /></td>
</tr>
<tr>

<td class="ContentHead" style="width: 60px">
</td>

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 463

7249ch21.qxd 11/13/06 9:24 PM Page 463

<td class="ContentHead">
</td>

</tr>
<tr>

<td class="ContentHead" style="width: 60px">
</td>

<td class="ContentHead">
<asp:FileUpload ID="fileuploadProductImage" runat="server"
Width="320px" CssClass="textField" /></td>

</tr>
</table>

<table cellSpacing="0" cellPadding="0"
width="100%" border="0" valign="top">
<tr>
<td rowspan="1" style="width: 4px">

<table border="0" cellpadding="0" cellspacing="0"
style="width: 120px">

<tr>
<td style="width: 59px">

<asp:Button ID="commandUpdate" runat="server"
OnClick="commandUpdate_Click"
Text="Update" CssClass="button" /></td>

<td style="width: 59px">
</td>
<td style="width: 100px">

<asp:Button ID="commandCancel" runat="server"
OnClick="commandCancel_Click" Text="Cancel"
CssClass="button" /></td>
</tr>
</table>

</td>
</tr>
</table>
</td>
</tr>
</table>
</td>
</tr>
</table>
</asp:Content>

How It Works

The HTML code you added to the EditProduct.aspx web form is similar to what you created in the
AddProduct.aspx web form. Several text boxes capture the user input. However, the EditProduct.aspx
web form has one additional item—an image control to display the current image that is associated
with the product.

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL464

7249ch21.qxd 11/13/06 9:24 PM Page 464

5. Proceed to the C# code section of the web form. In this area, you will add the code necessary to popu-
late the current information about the selected product for update and to update the newly entered
information. To start this process, within the page load event, set the focus to the first text box, and
again populate the DropDownList control with the different product categories:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.BusinessLogic;
using LittleItalyVineyard.Common;

public partial class Admin_EditProduct : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

if (!IsPostBack)
{

textName.Focus();
LoadCategories();

}
}

private void LoadCategories()
{

ProcessGetProductCategory processgetcategory =➥

new ProcessGetProductCategory();

try
{

processgetcategory.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

dropdownlistCategory.DataTextField = "ProductCategoryName";
dropdownlistCategory.DataValueField = "ProductCategoryID";
dropdownlistCategory.DataSource = processgetcategory.ResultSet;
dropdownlistCategory.DataBind();

}
}

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 465

7249ch21.qxd 11/13/06 9:24 PM Page 465

How It Works

This code first sets the focus to the textName text box and then populates the individual product categories
in the drop-down list.

6. The next order of business is to take the selected product that has been chosen to be updated and
populate the current information about the product to the respective text boxes along with the image:

private const string SAVEDPRODUCTIMAGEID = "SavedProductImageID";

protected void Page_Load(object sender , EventArgs e)
{

if (!IsPostBack)
{
textName.Focus();
LoadCategories();
LoadProduct();

}
}

private void LoadProduct()
{

Product prod = new Product();
prod.ProductID = int.Parse(Request.QueryString["ProductID"]);

ProcessGetProductByID getProduct = new ProcessGetProductByID();
getProduct.Product = prod;

try
{

getProduct.Invoke();

textName.Text = getProduct.Product.Name;
textDescription.Text = getProduct.Product.Description;
textPrice.Text = getProduct.Product.Price.ToString();
imageProductDetail.ImageUrl =➥

"../ImageViewer.ashx?ImageID=" +
getProduct.Product.ImageID.ToString();

dropdownlistCategory.SelectedIndex =➥

dropdownlistCategory.Items.IndexOf➥

(dropdownlistCategory.➥

Items.FindByText(getProduct.Product.➥

ProductCategory.➥

ProductCategoryName));

// Save product image id in case user does not want to update image.
SavedProductImageID = getProduct.Product.ImageID;
}

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL466

7249ch21.qxd 11/13/06 9:24 PM Page 466

catch
{

Response.Redirect("../ErrorPage.aspx");
}

}

private int SavedProductImageID
{

get { return (int) ViewState[SAVEDPRODUCTIMAGEID]; }
set { ViewState[SAVEDPRODUCTIMAGEID] = value; }

}

How It Works

This code is a little more involved compared to other sections in this chapter thus far. You added a con-
stant string field, SAVEDPRODUCTIMAGEID, which will represent the name of the object you want to
save within the ViewState. Subsequently, you added property named SavedProductImageID, which is
an integer value.

7. The final piece of functionality to implement is to add the code that will take the new information and
subsequently update the newly entered information. Place this code in the commandUpdate click event:

protected void commandUpdate_Click(object sender , EventArgs e)
{

if (IsValid)
{

Product prod = new Product();
prod.ProductID = int.Parse(Request.QueryString["ProductID"]);
prod.Name = textName.Text;
prod.Description = textDescription.Text;
prod.Price = Convert.ToDecimal(textPrice.Text);
prod.ProductCategoryID = int.Parse(dropdownlistCategory.➥

SelectedItem.Value);
prod.ImageID = SavedProductImageID;

if (fileuploadProductImage.HasFile)
{

prod.ImageData = fileuploadProductImage.FileBytes;
}
else
{

ProcessGetProductImage processgetimg =➥

new ProcessGetProductImage();
processgetimg.Product = prod;

try
{

processgetimg.Invoke();
}

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 467

7249ch21.qxd 11/13/06 9:24 PM Page 467

catch
{

Response.Redirect("../ErrorPage.aspx");
}

prod.ImageData = processgetimg.Product.ImageData;
}

ProcessUpdateProduct processupdate = new ProcessUpdateProduct();
processupdate.Product = prod;

try
{

processupdate.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

Response.Redirect("Products.aspx");
}

}

How It Works

To complete the updating and editing functionality in this exercise, you used the SavedProductImageID
property, which then sets or retrieves the specified value within the ViewState. You saved the image ID
of the product so that if the user does not want to update the image of the product, you can simply
retrieve the existing image ID from that property. However, if they do want to update the image, you
will handle that as well by first checking the HasFile property of the fileuploadProductImage control. If
this upload control has a file associated, you will then process the selected image. Finally, after a suc-
cessful update, the user will be redirected to the Products.aspx web form.

You will implement the Products.aspx web form in the following section of the chapter.

Viewing All the Products
At long last you have arrived at the last section of the chapter. This final section will tie up the
loose ends of the previous functionality that you have implemented thus far. To clarify this
further, you implemented the functionality that allows an administrator to log in, add a new
product to the catalog, and update an existing product. However, once an administrator logs
in, they need a landing page, or home page, and they need to be able to view the current prod-
ucts in the catalog and select a product that should be updated.

The following exercise is where you will add the aforementioned home page with the ability
to view the current product catalog.

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL468

7249ch21.qxd 11/13/06 9:24 PM Page 468

Exercise: Viewing the Product Catalog

This final exercise of the chapter will not be as lengthy as the previous ones have been. The main reason for this is
that you have already created a good deal of the functionality. Follow these steps:

1. Add a new web form to the Admin directory named Products.aspx, and associate it with the
Admin.master page. Upon adding the new web form, add the following HTML code to the web form:

<%@ Page Language="C#" MasterPageFile="~/Admin/Admin.master"
AutoEventWireup="true" CodeFile="Products.aspx.cs"
Inherits="Admin_Products"
Title=" Admin Control Panel | Products " %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderAdmin"
Runat="Server">

<asp:Button ID="commandAddProduct" runat="server"

OnClick="commandAddProduct_Click"
Text="Add Product" CssClass="button" />

<asp:DataList ID="datalistProducts" runat="server" RepeatColumns="1"
Width="100%">
<ItemTemplate>

<table border="0" cellpadding="1" cellspacing="0" width="100%">
<tr>

<td>
<img border="0" height="1" src="../images/spacer.gif"

width="50" /></td>
<td align="right" valign="top">

<a href='EditProduct.aspx?productID=
<%# Eval("ProductID") %>&ImageID=
<%# Eval("ProductImageID") %>'>

<img border="0" class="prodBorder" height="85"
src='../ImageViewer.ashx?ImageID=<%# Eval("ProductImageID") %>'>

</td>
<td valign="top" width="100%">

<table border="0" cellpadding="0" cellspacing="0" width="100%">
<tr>
<td width="17">

</td>
<td>

</td>
</tr>
<tr>
<td>

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 469

7249ch21.qxd 11/13/06 9:24 PM Page 469

</td>
<td class="ProductListHead">

<a href='EditProduct.aspx?productID=
<%# Eval("ProductID") %>&ImageID=
<%# Eval("ProductImageID") %>'>

<%# Eval("ProductName") %>

</td>
</tr>
<tr>

<td>
<img border="0" height="5"

src="../images/spacer.gif" width="1" />
</td>
</tr>
<tr>

<td colspan="2">
<table border="0" cellpadding="0" cellspacing="0"
width="75%">

<tr>
<td class="prodUnderlineBG" width="100%">

</td>
</tr>

<tr>
<td>
<img border="0" height="1" src="../images/spacer.gif"
width="1" /></td>
</tr>
<tr>

<td>

</td>

</tr>
</table>
</td>

</tr>
<tr>

<td>
</td>
<td>

<%# Eval("Description") %>
</td>
</tr>

<tr>
<td>
<img border="0" height="5" src="../images/spacer.gif"

width="1" /></td>

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL470

7249ch21.qxd 11/13/06 9:24 PM Page 470

</tr>
<tr>

<td>
</td>
<td>
Price:
<%# Eval("Price", "{0:c}") %>

</td>
</tr>
<tr>

<td>
<img border="0" height="5" src="../images/spacer.gif"

width="1" /></td>
</tr>
<tr>
<td>

</td>

</tr>
</table>
</td>

<td>
<img border="0" height="1" src="../images/spacer.gif"

width="15" /></td>
</tr>
</table>

</ItemTemplate>
</asp:DataList>

</asp:Content>

How It Works

This HTML code is similar to that within the public portion of the site, in other words in the Winery.aspx
web form. The code contains a DataList control and shows the name, a short description, the cost, and
the image of the product. When the user clicks the title or the image, the user will be navigated to the
EditProduct.aspx web form where the appropriate updates can be performed. Lastly, you added a com-
mand button, commandAddProduct, that will redirect the user to the AddProduct.aspx web form.

2. For the next task, proceed to the code portion of the web form, and add the following C# code that will
populate the product catalog:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 471

7249ch21.qxd 11/13/06 9:24 PM Page 471

using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;

public partial class Admin_Products : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

if (!IsPostBack)
{

LoadProducts();
}

}

private void LoadProducts()
{

ProcessGetProducts processproducts = new ProcessGetProducts();

try
{

processproducts.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

datalistProducts.DataSource = processproducts.ResultSet;
datalistProducts.DataBind();

}

protected void commandAddProduct_Click(object sender , EventArgs e)
{

Response.Redirect("AddProduct.aspx");
}

}

How It Works

This code loads the entire product catalog to the DataList control by using the ProcessGetProducts
business logic class and subsequently data binds the DataList with the results.

You now have the ability to view the products within your catalog.

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL472

7249ch21.qxd 11/13/06 9:24 PM Page 472

Summary
In this chapter, you implemented the administrator’s control panel; specifically, you added the
functionality to allow only those users with administrative privileges to log in, subsequently
view the current products in the catalog, add a new product, and then update or edit an existing
product. These areas are fully functional at this point; however, you will revisit the administrator’s
control panel in Chapter 23 to add some functionality.

CHAPTER 21 ■ CREATING THE ADMINISTRATOR’S CONTROL PANEL 473

7249ch21.qxd 11/13/06 9:24 PM Page 473

7249ch21.qxd 11/13/06 9:24 PM Page 474

Building the Customer’s Account

You have completed implementing the administrator’s account, also referred to as the
administrator’s control panel. With this chapter, you are fast approaching the end of the core
development for the Little Italy Vineyards winery’s application.

In this chapter, you will create the functionality to allow the customer to view what they
have ordered and see a real-time snapshot of the order status. Specifically, you’ll implement
the following functionality:

• Setting up the customer account

• Setting up the customer login

• Viewing the customer’s orders

• Viewing the customer’s order details

Setting Up the Customer Account
Your first task for implementing the customer’s account is to perform the initial setup within
Visual Studio 2005. This initial setup will not be overly complex; in fact, it is similar to how you
set up the administrator’s account in the previous chapter. The following exercise shows you how.

475

C H A P T E R 2 2

■ ■ ■

7249ch22.qxd 11/13/06 9:24 PM Page 475

Exercise: Setting Up the Customer Account

In this exercise, you will create the customer account in Visual Studio 2005. The process is similar to setting up the
administrator’s account in the previous chapter. Follow these steps:

1. Proceed to the web project, right-click the web project, and choose New Folder. Finally, change the
name of the new folder to Account, as shown in Figure 22-1.

Figure 22-1. The Account folder

2. Add a new master page named Account.master with the following Hypertext Markup Language
(HTML) code:

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="Account.master.cs" Inherits="Main" %>

<html>
<head runat="server">

<title></title>
<meta http-equiv="Content-Style-Type" content="text/css" />
<link href="../Css/style.css" type="text/css" rel="stylesheet" />
<script language="javascript" src="../Scripts/scriptLibrary.js">
</script>

</head>

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT476

7249ch22.qxd 11/13/06 9:24 PM Page 476

<body>
<form id="form1" runat="server">

<table width="100%" height="100%" border="0" cellpadding="0"
cellspacing="0" style="background-image: url(../images/til_1.jpg);">

<tr>
<td> </td>
<td width="490" align="left" valign="top">

<table width="490" border="0" cellspacing="0"
cellpadding="0">

<tr>
<td width="10"> </td>
<td width="470" align="left" valign="top">

<table width="470" height="100%" border="0"
cellpadding="0" cellspacing="0">

<tr>
<td height="164" align="left" valign="top"
background="../images/top_1.jpg" style="width: 475px">
<div style="padding-left: 156px; padding-top: 69px; text-align: left;">

<img src="../images/logo.jpg" width="159"
height="36" border="0">

 </div>

</td>
</tr>
<tr>

<td height="172" align="right" valign="top"
background="../images/back_1.jpg" style="width: 475px">
<div style="padding-left: 0px; padding-top: 14px;
padding-right: 23px; padding-bottom: 0px">

 <asp:Label ID="labelWelcome" runat="server"></asp:Label>

<asp:HyperLink ID="hyperlinkReturn" runat="server"

NavigateUrl="~/Default.aspx">Return to Little Italy Vineyards
</asp:HyperLink></div>

</td>
</tr>
<tr>

<td height="100%" align="left" valign="top" style="width: 475px">
<table width="100%" height="100%" border="0" cellpadding="0"
cellspacing="0" background="../images/rep_3.jpg">
<tr align="left" valign="top">
<td background="../images/rep_left.jpg" style="width: 10px">
</td>
<td height="100%">
<table width="450" height="100%" border="0" cellpadding="0"
cellspacing="0">

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT 477

7249ch22.qxd 11/13/06 9:24 PM Page 477

<tr align="left" valign="top">
<td background="../images/rep_line.jpg" bgcolor="#F3E9BF"
style="background-repeat: repeat-y;

background-position: top left;">
<asp:ContentPlaceHolder ID="contentplaceholderMain" runat="server">

</asp:ContentPlaceHolder>
</td>
</tr>
</table>
</td>
<td width="10" background="../images/rep_right.jpg">

</td>
</tr>
<tr>
<td colspan="3" valign="top" align="center">

</td>

</tr>
</table>
</td>
</tr>
</table>

</td>
<td></td>

</tr>
</table>

</td>
<td> </td>

</tr>
<tr>

<td></td>
<td height="100%">

<table cellpadding="0" cellspacing="0"
border="0" width="100%" height="100%">
<tr>

<td style="height: 100%; background-image: url(../images/rep_bot.jpg);
background-repeat: repeat-y; background-position: center;">
</td>

</tr>
</table>

</td>
<td></td>
</tr>

</table>
</form>

</body>
</html>

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT478

7249ch22.qxd 11/13/06 9:24 PM Page 478

3. Add a web form named CustomerOrders.aspx, and associate it to the Account.master master page.

4. The final task in this first exercise is to add the other web form that you will need. Specifically, add
another web form to the Account directory named CustomerOrderDetails.aspx, and associate it to the
Account.master master page as well.

You have now arrived at the end of the first exercise within the chapter; in the next section, you’ll further enhance
the customer login.

Extending the Customer Login
The customer login is actually a piece of functionality that already exists in your application.
If you rewind to when you implemented the shopping cart, you’ll remember that you built an
existing login for the customer. If they are returning customers, they can log in. Otherwise, they
can register for a new account. In the following exercise, you will revisit the login you created
and expand upon it to eventually allow the user to view what they have ordered from your
application.

Exercise: Extending the Customer Login

In this exercise, you’ll revisit the login functionality that you created when you implemented the shopping cart.
Perform this step:

1. Return to the Login.aspx web form and then to the commandLogin click event. You’ll see existing code
in this click event; however, you’ll extend the functionality to handle when a customer is logging in to
their account but not adding any products to the shopping cart. Here’s the code:

protected void commandLogin_Click(object sender , EventArgs e)
{

if (IsValid)
{

EndUser enduser = new EndUser();
ProcessEndUserLogin processlogin = new ProcessEndUserLogin();

enduser.ContactInformation.Email = textUsername.Text;
enduser.Password = textPassword.Text;
processlogin.EndUser = enduser;

try
{

processlogin.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT 479

7249ch22.qxd 11/13/06 9:24 PM Page 479

if (processlogin.IsAuthenticated)
{

Response.Cookies["Authenticated"].Value = "True";

base.CurrentEndUser = processlogin.EndUser;

if (Request.Cookies["ReturnURL"] != null)
{

Response.Redirect(Request.Cookies["ReturnURL"].Value);
}
else
{

Response.Redirect("Account/CustomerOrders.aspx");
}

}
else
{

labelMessage.Text = "Invalid login!";
}

}
}

How It Works

This code first checks to see whether the page is valid as a result of the validation controls. If in fact
the page is valid, meaning the user has input all the necessary information, the ProcessEndUserLogin
business logic class is then populated with the EndUser class property. ProcessEndUserLogin subse-
quently calls the Invoke() method. Following this, the IsAuthenticated property is checked, and if it is
true, since this login is not coming from the user registration process, the ReturnURL cookie will be
null. As a result, the user will be redirected to the CustomerOrders.aspx web form. If the credentials
entered are not valid, the user will be informed because an error message within the labelMessage
control will appear.

You now have the ability for a customer to log in to their account.

Viewing the Orders
One of the major facets of the customer’s account will be the ability for a customer to view the
existing orders they have placed in the shopping cart and the associated details of the order. It
is quite simple to understand why it’s important to include this functionality. When a cus-
tomer makes a purchase from your client’s company, they want to have a receipt of what they
have purchased. The following exercise shows how to create the functionality to allow the user
to view the orders.

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT480

7249ch22.qxd 11/13/06 9:24 PM Page 480

Exercise: Viewing the Orders

In this exercise, you will allow a customer to view the history of the orders they have placed. Follow these steps:

1. As with many of the exercises, you will start with the database and create the stored procedure
needed to query the orders for a specific user. Here’s the stored procedure:

CREATE PROCEDURE Orders_Select

@EndUserID int

AS

SELECT OrderID,TransactionID, OrderDate, OrderStatusName,
ShipDate, TrackingNumber FROM Orders
INNER JOIN orderstatus ON orderstatus.orderstatusid = orders.orderstatusid
WHERE EndUserID = @EndUserID
ORDER BY OrderDate DESC

How It Works

The Orders_Select stored procedure queries the orders from the Orders table and joins the table to the
OrderStatus table via inner joins so the resulting query can display the status of the order.

2. The next step is to add the name of the new stored procedure to the Name enumeration within the
StoredProcedure class after executing the script from step 1. Following this, you need to add a new
class named OrdersSelectData to the Select directory within the LittleItalyVineyard.DataAccess class
library project. In the new class, add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class OrdersSelectData : DataAccessBase
{

private EndUser _enduser;

public OrdersSelectData()
{

StoredProcedureName = StoredProcedure.Name.➥

Orders_Select.ToString();
}

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT 481

7249ch22.qxd 11/13/06 9:24 PM Page 481

public DataSet Get()
{

DataSet ds;

OrdersSelectDataParameters _ordersselectdataparameters =➥

new OrdersSelectDataParameters(EndUser);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString ,➥

_ordersselectdataparameters.Parameters);

return ds;
}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}
}

public class OrdersSelectDataParameters
{

private EndUser _enduser;
private SqlParameter[] _parameters;

public OrdersSelectDataParameters(EndUser enduser)
{

EndUser = enduser;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@EndUserID" , EndUser.EndUserID)
};

Parameters = parameters;
}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT482

7249ch22.qxd 11/13/06 9:24 PM Page 482

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

How It Works

The data access code populates the parameters from the EndUser property and, upon building the
parameters with the associated parameters class, returns a DataSet from the Get function.

3. As usual, you need to go to the business logic tier and add a new class to the LittleItalyVineyard.
BusinessLogic class library project. The name of the new class is ProcessGetOrders, and you will add
the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetOrders : IBusinessLogic
{

private EndUser _enduser;
private DataSet _resultset;

public ProcessGetOrders()
{

}

public void Invoke()
{

OrdersSelectData ordersselect = new OrdersSelectData();
ordersselect.EndUser = this.EndUser;
ResultSet = ordersselect.Get();

}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT 483

7249ch22.qxd 11/13/06 9:24 PM Page 483

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

How It Works

The business logic code added as usual implements the Invoke() method that will execute the data
access code. The EndUser property will be populated from the calling code and will pass that property
to the data access classes. Finally, a DataSet will be returned with the queried results.

4. Next, you will add the HTML code to the presentation tier and more specifically the CustomerOrders.aspx
web form located in the Account directory that you added in the first exercise in this chapter. So, add
the following HTML code to the web form:

<%@ Page Language="C#" MasterPageFile="Account.master"
AutoEventWireup="true" CodeFile="CustomerOrders.aspx.cs"
Inherits="Account_CustomerOrders"
Title="Little Italy Vineyards | Orders" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<table border="0" cellpadding="0" cellspacing="0" width="90%">

<tr>
<td>

My Orders</td>
</tr>
<tr>

<td>
</td>

</tr>
<tr>

<td>
<asp:GridView ID="gridviewOrders" runat="server"
AutoGenerateColumns="false" Width="100%">

<Columns>
<asp:TemplateField HeaderText="Transaction ID">

<ItemTemplate>
<a href="CustomerOrderDetails.aspx?TransID=
<%# Eval("TransactionID") %>&OrderID=<%# Eval("OrderID") %>">
<%# Eval("TransactionID") %>

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Order Date">

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT484

7249ch22.qxd 11/13/06 9:24 PM Page 484

<ItemTemplate>
<%# Eval("OrderDate") %>

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Status">

<ItemTemplate>
<%# Eval("OrderStatusName") %>

</ItemTemplate>
</asp:TemplateField>

<asp:TemplateField HeaderText="Ship Date">
<ItemTemplate>

<%# Eval("ShipDate") %>
</ItemTemplate>

</asp:TemplateField>
<asp:TemplateField HeaderText="Tracking Number">

<ItemTemplate>
<%# Eval("TrackingNumber")%>

</ItemTemplate>
</asp:TemplateField>
</Columns>
</asp:GridView>

</td>
</tr>

</table>

</asp:Content>

How It Works

In this code, you added a GridView control that will display three individual columns. The three
columns will display the TransactionID, OrderDate, and OrderStatusName fields that were specified
within the stored procedure used to query the result set. Lastly, the TransactionID field will link to the
CustomerOrderDetails.aspx web form and pass specific query strings.

5. For the conclusion of the exercise, proceed to the code view of CustomerOrders.aspx, and add the
following code, which will populate the orders based upon the user:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT 485

7249ch22.qxd 11/13/06 9:24 PM Page 485

using LittleItalyVineyard.BusinessLogic;

public partial class Account_CustomerOrders : BasePage
{

protected void Page_Load(object sender , EventArgs e)
{

if (!IsPostBack)
{

Label labelWelcome = (Label) Master.FindControl➥

("labelWelcome");
labelWelcome.Text = "Welcome, " + base.CurrentEndUser.FirstName +

" " + base.CurrentEndUser.LastName;

LoadOrders();
}

}

private void LoadOrders()
{

ProcessGetOrders getorders = new ProcessGetOrders();
getorders.EndUser = CurrentEndUser;

try
{

getorders.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

gridviewOrders.DataSource = getorders.ResultSet;
gridviewOrders.DataBind();

}
}

How It Works

Within the previously added code, if the request is not a postback, the labelWelcome control within the
Account.master page is retrieved by using the Master.FindControl method. Subsequently, the text of this
control is then set to a welcome message utilizing the logged-in user’s first and last names. After this
information is set up, the orders for the logged-in user are queried by instantiating the ProcessGetOrders
class within the business logic tier and finally binding the gridviewOrders GridView control to the DataSet
result set of the ProcessGetOrders class.

You now have the ability for an administrator to view the customers’ orders.

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT486

7249ch22.qxd 11/13/06 9:24 PM Page 486

Viewing the Order Details
The final step of giving your customers the ability to view their orders is to allow the customer
to view the details of the main order they placed. To be more specific, in the following exercise,
you’ll implement the ability to view what exactly the order contains.

Exercise: Viewing the Order Details

To complete the final exercise, you will continue the implementation of viewing the orders from a customer and
take it to the next level. This next level is to view the details of each order that the customer has placed. Follow
these steps:

1. Again, you will begin with the stored procedure to query the order details from the supplied order as
follows:

CREATE PROCEDURE OrderDetails_Select

@OrderID int

AS

SELECT Quantity, ProductName, Price FROM OrderDetails
INNER JOIN Products ON Products.ProductID = OrderDetails.ProductID
WHERE OrderID = @OrderID

How It Works

The OrderDetails_Select stored procedure queries the OrderDetails table and joins it with the Products
table via inner joins based on the OrderID passed as a parameter.

2. As with the other exercises, add the name of the newly executed stored procedure to the Name enu-
meration in the StoredProcedure class within the LittleItalyVineyard.DataAccess class library project.
Then add a new class to the Select directory and namespace named OrderDetailsSelectData, and add
the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class OrderDetailsSelectData : DataAccessBase
{

private OrderDetails _orderdetails;

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT 487

7249ch22.qxd 11/13/06 9:24 PM Page 487

public OrderDetailsSelectData()
{
StoredProcedureName = StoredProcedure.Name.➥

OrderDetails_Select.ToString();
}

public DataSet Get()
{
DataSet ds;

OrderDetailsSelectDataParameters➥

_orderdetailsselectdataparameters =➥

new OrderDetailsSelectDataParameters(OrderDetails);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString , ➥

_orderdetailsselectdataparameters.Parameters);

return ds;
}

public OrderDetails OrderDetails
{

get { return _orderdetails; }
set { _orderdetails = value; }

}
}

public class OrderDetailsSelectDataParameters
{

private OrderDetails _orderdetails;
private SqlParameter[] _parameters;

public OrderDetailsSelectDataParameters(OrderDetails orderdetails)
{
OrderDetails = orderdetails;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@OrderID" , OrderDetails.OrderID) ,
};

Parameters = parameters;
}

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT488

7249ch22.qxd 11/13/06 9:24 PM Page 488

public OrderDetails OrderDetails
{

get { return _orderdetails; }
set { _orderdetails = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

How It Works

In this code, which you added to the data access tier, a DataSet is returned from the Get method after
the parameters have been built with the associated parameter class.

3. Next, proceed to the business logic portion of the code base. Specifically, add a new class named
ProcessGetOrderDetails to the LittleItalyVineyard.BusinessLogic class library, and add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetOrderDetails : IBusinessLogic
{

private OrderDetails _orderdetails;
private DataSet _resultset;

public ProcessGetOrderDetails()
{

}

public void Invoke()
{

OrderDetailsSelectData orderdetailsselect =➥

new OrderDetailsSelectData();
orderdetailsselect.OrderDetails = this.OrderDetails;
ResultSet = orderdetailsselect.Get();

}

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT 489

7249ch22.qxd 11/13/06 9:24 PM Page 489

public OrderDetails OrderDetails
{

get { return _orderdetails; }
set { _orderdetails = value; }

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

How It Works

The business logic code is similar in that it implements the standard IBusinessLogic interface with the
Invoke() method that calls upon the data access code. Finally, the ResultSet property is populated with
the queried results.

4. Next go to the presentation tier of the functionality of this exercise, and place the following HTML code
in the CustomerOrderDetails.aspx web form:

<%@ Page Language="C#" MasterPageFile="Account.master"
AutoEventWireup="true" CodeFile="CustomerOrderDetails.aspx.cs"
Inherits="Account_CustomerOrderDetails"
Title="Little Italy Vineyards | Order Details" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<table border="0" cellpadding="0" cellspacing="0" width="90%">

<tr>
<td style="width: 151px">
</td>
<td style="width: 100px">
</td>

</tr>
<tr>

<td style="width: 151px; height: 13px;">
Transaction ID</td>

<td style="width: 100px; height: 13px;">
<asp:Label ID="labelTransactionID" runat="server" Text="">
</asp:Label></td>

</tr>
<tr>

<td style="width: 151px">
</td>

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT490

7249ch22.qxd 11/13/06 9:24 PM Page 490

<td style="width: 100px">
</td>

</tr>
<tr>

<td style="width: 151px">
Purchased Items:</td>

<td style="width: 100px">
<asp:GridView ID="gridviewOrderDetailsProducts"
runat="server" AutoGenerateColumns="false"
Width="100%">

<Columns>
<asp:TemplateField HeaderText="Qty.">

<ItemTemplate>
<%# Eval("Quantity") %>

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Product">

<ItemTemplate>
<%# Eval("ProductName") %>

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Price">

<ItemTemplate>
<%# Eval("Price" , "{0:c}")%>

</ItemTemplate>
</asp:TemplateField>

</Columns>
</asp:GridView>

</td>
</tr>
<tr>

<td style="width: 151px; height: 16px;">
Tax:</td>

<td style="width: 100px; height: 16px;">
<asp:Label ID="labelTax" runat="server"></asp:Label></td>

</tr>
<tr>

<td style="width: 151px; height: 16px;">
Order Total:</td>

<td style="width: 100px; height: 16px;">
<asp:Label ID="labelOrderTotal" runat="server">
</asp:Label></td>

</tr>
<tr>

<td style="width: 151px; height: 19px">
</td>
<td style="width: 100px; height: 19px">

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT 491

7249ch22.qxd 11/13/06 9:24 PM Page 491

</td>
</tr>
<tr>

<td style="width: 151px">
</td>
<td style="width: 100px">

<asp:Button ID="commandReturn" runat="server"
Text="Return"
CssClass="button" OnClick="commandReturn_Click" />
</td>

</tr>
</table>

</asp:Content>

How It Works

The order details display the individual products along with the price and give the amount of tax paid
and the order total. Finally, a command button returns the user to the listing of all their orders.

5. Now that the HTML code is in place to display the order details, you can move along to the C# code
portion of the CustomerOrderDetails.aspx web form. Add the following code to the web form:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;
using LittleItalyVineyard.Operational;

public partial class Account_CustomerOrderDetails : BasePage
{

protected void Page_Load(object sender , EventArgs e)
{

if (!IsPostBack)
{

Label labelWelcome = (Label) Master.FindControl➥

("labelWelcome");
labelWelcome.Text = "Welcome, " +
base.CurrentEndUser.FirstName +
" " + base.CurrentEndUser.LastName;

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT492

7249ch22.qxd 11/13/06 9:24 PM Page 492

LoadOrderDetails();
}

}

private void LoadOrderDetails()
{

ProcessGetOrderDetails processdetails =➥

new ProcessGetOrderDetails();

OrderDetails orderdetails = new OrderDetails();
orderdetails.OrderID = int.Parse(Request.QueryString["OrderID"]);
processdetails.OrderDetails = orderdetails;

try
{

processdetails.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

gridviewOrderDetailsProducts.DataSource = processdetails.ResultSet;
gridviewOrderDetailsProducts.DataBind();

labelTransactionID.Text = Request.QueryString["TransID"];
}

protected void commandReturn_Click(object sender , EventArgs e)
{

Response.Redirect("CustomerOrders.aspx");
}

}

How It Works

In the page load event, the first task is to write the welcome message to the master page with the
logged-in user. You accomplish this by using the Master.FindControl method and then setting the text of
the Label control to that of the welcome message using the base page’s CurrentEndUser property. Finally,
the individual products are displayed within the gridviewOrderDetailsProducts GridView control by
utilizing the ProcessGetOrderDetails class. To complete the display, the transaction ID is displayed
by using the query string. Finally, you use the response.redirect method within the commandReturn
click event to navigate the user to the main orders web page.

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT 493

7249ch22.qxd 11/13/06 9:24 PM Page 493

6. Some items still need to be displayed within the CustomerOrderDetails.aspx web form. To accomplish
this, proceed to the LittleItalyVineyard.Operational class library project and then to the PayPalManager
class. In this class, you need to implement a method that will utilize the PayPal application programming
interfaces (APIs) to query the details of an order that was placed according to the transaction ID. To
accomplish this, add the following method to the PayPalManager class:

public void GetTransactionDetails(Orders order)
{

}

7. You have added a new method named GetTransactionDetails with a parameter of the common class
Orders being passed. Prior to addressing the code within this new method, you need to make some
additions to the constructor as well as to the property that specifies the path to the certificate. Let’s
examine these items:

public PayPalManager()
{

UserIdPasswordType user = new UserIdPasswordType();

//set api credentials
user.Username = ConfigurationManager.AppSettings["PayPalAPIUsername"];
user.Password = ConfigurationManager.AppSettings["PayPalAPIPassword"];

PPInterface.Url = ConfigurationManager.AppSettings["PayPalAPIURL"];
PPInterface.RequesterCredentials = new CustomSecurityHeaderType();
PPInterface.RequesterCredentials.Credentials =➥

new UserIdPasswordType();
PPInterface.RequesterCredentials.Credentials = user;

service.Url = ConfigurationManager.AppSettings["PayPalAPIURL"];
service.RequesterCredentials = new CustomSecurityHeaderType();
service.RequesterCredentials.Credentials = new UserIdPasswordType();
service.RequesterCredentials.Credentials = user;

//this is .NET 2.0 specific portion of the code that
//allows us to have the .p12 on the filesystem and
//not have to register it with WinHttpCertCfg
//uses X509Certificate2 class.
FileStream fstream = File.Open➥

(CertPath , FileMode.Open , FileAccess.Read);
byte[] buffer = new byte[fstream.Length];

int count = fstream.Read(buffer , 0 , buffer.Length);

fstream.Close();

//use .NET 2.0 X509Certificate2 class to read .p12 from filesystem
// where "12345678" is the private key password

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT494

7249ch22.qxd 11/13/06 9:24 PM Page 494

X509Certificate2 cert = new X509Certificate2(buffer , CertPassword);
PPInterface.ClientCertificates.Add(cert);
service.ClientCertificates.Add(cert);

}

How It Works

In the constructor, nothing all that new is added; there are simply additional declarations. In addition to
the PPInterface that specifies the URL and the user credentials, the PayPalAPISoapBinding class is
instantiated as the variable service:

<appSettings>
<!-- Sandbox PayPal -->

<add key="CertificatePath" value="~/Certs/LittleItalyVineyards.p12"/>
</appSettings>

How It Works

A property within the PayPalManager class named CertPath returns the physical path of the certificate
that is needed for the PayPal APIs. This property uses the Server.MapPath with the value that is specified
within the Web.config appSetting values. However, since the request will be coming from a subfolder,
you needed to adjust the value of the CertificatePath key within the appSettings. Therefore, the new
value should specify the root directory by using the tilde (~) character, which will force the value to use
the root path of the certificate.

8. All the additions are now in place; therefore, you can address the GetTransactionDetails method itself.
With that said, add the following code to the method:

public void GetTransactionDetails(Orders order)
{

GetTransactionDetailsRequestType detailRequest =➥

new GetTransactionDetailsRequestType();
detailRequest.TransactionID = order.TransactionID;
detailRequest.Version = "2.0";
GetTransactionDetailsReq request = new GetTransactionDetailsReq();
request.GetTransactionDetailsRequest = detailRequest;

GetTransactionDetailsResponseType response = service.➥

GetTransactionDetails(request);
}

How It Works

In this code, the GetTransactionDetailsRequestType class is instantiated and subsequently sets the version
of the PayPal APIs along with the more important property, the transaction ID. Following this, you specify
that the GetTransactionDetailsResponseType class uses the GetTransactionDetails method to submit to the
PayPal servers. The next step of the exercise will outline the resulting response and check for any errors
that might occur.

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT 495

7249ch22.qxd 11/13/06 9:24 PM Page 495

9. To complete the final implementation of the GetTransactionDetails method, append code to the method
that will first check for any errors in the submission and if successful will set the IsSubmissionSuccess
property to true. If there are errors, the IsSubmissionSuccess property will be set to false. The following
is the code:

public void GetTransactionDetails(Orders order)
{

GetTransactionDetailsRequestType detailRequest =➥

new GetTransactionDetailsRequestType();
detailRequest.TransactionID = order.TransactionID;
detailRequest.Version = "2.0";
GetTransactionDetailsReq request = new GetTransactionDetailsReq();
request.GetTransactionDetailsRequest = detailRequest;

GetTransactionDetailsResponseType response = service.➥

GetTransactionDetails(request);

string sErrors = this.CheckForErrors(response);

if (sErrors == string.Empty)
{

PaymentInfoType payment = response.➥

PaymentTransactionDetails.PaymentInfo;

order.OrderTotal = GetAmountValue(payment.GrossAmount);
order.Tax = GetAmountValue(payment.TaxAmount);
IsSubmissionSuccess = true;

}
else
{

IsSubmissionSuccess = false;
}

}

How It Works

After setting the IsSubmissionSuccess property to true, the Orders class that is passed into the method
as a parameter has the OrderTotal and Tax properties populated. However, before populating these
properties, you need to add a new method that will parse the amounts that are desired:

private decimal GetAmountValue(BasicAmountType amount)
{

decimal sOut;

try
{
sOut = Convert.ToDecimal(amount.Value);
amount.currencyID = CurrencyCodeType.USD;

}

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT496

7249ch22.qxd 11/13/06 9:24 PM Page 496

catch
{

sOut = 0;
}

return sOut;
}

The GetAmountValue function converts the value to a decimal and subsequently to a property of the
Orders class. Lastly, if an error occurs by checking the sErrors variable by running it through the
CheckForErrors function, the IsSubmissionSuccess is set to false, which can then be determined from
the calling code.

10. You’ll now complete the additions to the CustomerOrderDetails.aspx C# code portion of the web form.
You will instantiate the PayPalManager class along with an Orders class that sets the TransactionID
property to the query string passed along to the page. Therefore, the LoadOrderDetails method of the
CustomerOrderDetails.aspx web form is as follows:

private void LoadOrderDetails()
{

ProcessGetOrderDetails processdetails = new ProcessGetOrderDetails();

OrderDetails orderdetails = new OrderDetails();
orderdetails.OrderID = int.Parse(Request.QueryString["OrderID"]);
processdetails.OrderDetails = orderdetails;

try
{

processdetails.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

gridviewOrderDetailsProducts.DataSource = processdetails.ResultSet;
gridviewOrderDetailsProducts.DataBind();

labelTransactionID.Text = Request.QueryString["TransID"];

PayPalManager paypal = new PayPalManager();
Orders ord = new Orders();

ord.TransactionID = Request.QueryString["TransID"];
paypal.GetTransactionDetails(ord);

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT 497

7249ch22.qxd 11/13/06 9:24 PM Page 497

if (paypal.IsSubmissionSuccess)
{

labelOrderTotal.Text = ord.OrderTotal.ToString("c");
labelTax.Text = ord.Tax.ToString("c");

}
else
{

Response.Redirect("../ErrorPage.aspx");
}

}

In this code that populates the order details, if the IsSubmissionSuccess property has a value of true, the labelOrderTotal
and labelTax controls’ text properties are set to the subsequent values of the Orders class. If there is an error, the
user will be redirected to the error page.

Summary
You have finished the core development for the application and case study. Congratulations!
This is not to say that there will not be any additional development, but the majority of the
coding is complete. As a result of most of the coding being complete, you will now focus on
issues of fulfilling the orders, accessing the money from the purchases, and finally deploying
the application to the production server in preparation for the application to launch.

CHAPTER 22 ■ BUILDING THE CUSTOMER’S ACCOUNT498

7249ch22.qxd 11/13/06 9:24 PM Page 498

Order Fulfillment and
Promotion

In the previous parts of this book, you added a great deal of functionality and code to the

overall application. You are still not completely finished with the coding aspect, however,

even though the vast majority of the code and structure is intact. In this part, you will focus

on viewing the orders placed by customers, fulfilling the orders, and updating the cus-

tomers in a timely fashion.

P A R T 6

■ ■ ■

7249ch23.qxd 11/13/06 9:24 PM Page 499

7249ch23.qxd 11/13/06 9:24 PM Page 500

Managing the Orders

The first chapter in this part of the book will focus on managing the orders placed by your
customers. Specifically, I’ll address the following aspects:

• Viewing all the customers’ orders

• Viewing the order details

• Updating the status of the order

• Fulfilling the order

• Informing the customer of a new order’s status

• Refunding customer orders

Viewing the Orders
In the previous chapter regarding the customer’s account, you implemented the ability for
customers to view their orders. However, now that you have shifted the focus to fulfilling the
orders, the administrator needs the ability to view all the orders from all the customers. You’ll
learn how to do this in the following exercise.

Exercise: Viewing the Orders

This exercise shows how to enable an administrator to view all the orders that have been placed by customers.
Follow these steps:

1. Add and execute the stored procedure to query the orders that have been placed by customers. Here’s
the stored procedure script:

CREATE PROCEDURE OrdersAll_Select

AS

SELECT
OrderID,TransactionID, OrderDate, OrderStatusName,
FirstName, LastName,

501

C H A P T E R 2 3

■ ■ ■

7249ch23.qxd 11/13/06 9:24 PM Page 501

AddressLine, AddressLine2, City, State, PostalCode,
Phone, Email
FROM Orders
INNER JOIN orderstatus
ON orderstatus.orderstatusid = orders.orderstatusid
INNER JOIN EndUser
ON EndUser.EndUserID = Orders.EndUserID
INNER JOIN Address
ON Address.AddressID = EndUser.AddressID
INNER JOIN ContactInformation
ON ContactInformation.ContactInformationID = EndUser.ContactInformationID
ORDER BY OrderDate DESC

How It Works

The OrdersAll_Select stored procedure will query the Orders table for all the orders that have been
placed. Then you joined four other tables via inner joins so you can display the name of the customer,
their address, their e-mail address, their phone number, and the status of the order.

2. Add the name of the new stored procedure, OrdersAll_Select, to the Name enumeration in the
StoredProcedure class located in the data access tier of the code. Since you are still working in the
data access layer of the code, add a new class to the Select directory and namespace named
OrdersAllSelectData. Add the following code to the class:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class OrdersAllSelectData : DataAccessBase
{

public OrdersAllSelectData()
{
StoredProcedureName = StoredProcedure.Name.➥

OrdersAll_Select.ToString();
}

public DataSet Get()
{
DataSet ds;

DataBaseHelper dbhelper = new DataBaseHelper➥

(base.StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString);

CHAPTER 23 ■ MANAGING THE ORDERS502

7249ch23.qxd 11/13/06 9:24 PM Page 502

return ds;
}

}
}

How It Works

The code added to the OrdersAllSelectData class doesn’t contain any associated parameters class
because no parameters are required for the associated stored procedure. Lastly, a DataSet is returned
from the Get function with the result set being all the orders that have been placed in the system.

3. You’ll now address the business logic code, so open the LittleItalyVineyard.BusinessLogic class library
project. Add a new class named ProcessGetAllOrders, and then add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetAllOrders : IBusinessLogic
{

private DataSet _resultset;

public ProcessGetAllOrders()
{

}

public void Invoke()
{
OrdersAllSelectData ordersall = new OrdersAllSelectData();
ResultSet = ordersall.Get();

}

public DataSet ResultSet
{
get { return _resultset; }
set { _resultset = value; }

}
}

}

CHAPTER 23 ■ MANAGING THE ORDERS 503

7249ch23.qxd 11/13/06 9:24 PM Page 503

How It Works

In the business logic class, ProcessGetAllOrders will implement the IBusinessLogic interface and thus
include the Invoke() method. Finally, a property named ResultSet will hold a DataSet from the returned
Get function of the OrdersAllSelectData class in the data access tier.

4. Thus far, you have addressed the stored procedure and the data access and business logic layers of
the code. Now you need to turn your attention to the presentation segments of the code and architec-
ture so that an administrator can view and eventually manage the customer orders. To proceed, locate
the Admin.master master page located in the Admin directory of the web project. First add an Orders
tab to the Hypertext Markup Language (HTML) by adding the following HTML code to the master page:

<li runat="server" id="Orders">Orders

After adding the new link, the complete HTML code for the Admin.master page is as follows:

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="Admin.master.cs" Inherits="Admin_Admin" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Untitled Page</title>
<link href="../CSS/Style.css" type="text/css" rel="stylesheet">

</head>
<body style="text-align: center" background="../Images/til_1.jpg">

<form id="form1" runat="server">

<table border="0" cellpadding="0" cellspacing="0" width="90%">

<tr>
<td style="width: 100%; background-color:

#f3e9bf; text-align: center">
</td>

</tr>
<tr>

<td style="width: 100%; background-color:
#f3e9bf; text-align: center">

<img border="0" height="36" src="../images/logo.jpg"
width="159" />

</td>
</tr>
<tr>

<td style="width: 100%; background-color:
#f3e9bf; text-align: center">

Administrative Control Panel</td>
</tr>
<tr>

<td style="width: 100%">
<div class="shadetabs">

CHAPTER 23 ■ MANAGING THE ORDERS504

7249ch23.qxd 11/13/06 9:24 PM Page 504

<li runat="server" id="Products">
Products

<li runat="server" id="Orders">
Orders

</div>

</td>
</tr>
<tr>

<td style="width: 100%; text-align: center;">
<div style="background-color: #f3e9bf; width: 100%; text-align:

center; height: 205px;">
<asp:contentplaceholder id="contentplaceholderAdmin"

runat="server">
</asp:contentplaceholder>
</div>

</td>
</tr>

</table>
</form>

</body>
</html>

How It Works

The master page is not much different now from when you first created it. It simply has another link in
the form of a tab that will link to the Order.aspx web form.

5. Now that you have modified the master page to include an Orders link, you need to add the Orders.aspx
web form to the Admin directory and associate it to the Admin.master master page. Upon adding the
new web form, add the following HTML code:

<%@ Page Language="C#" MasterPageFile="~/Admin/Admin.master"
AutoEventWireup="true" CodeFile="Orders.aspx.cs"
Inherits="Admin_Orders"
Title="Admin Control Panel | Orders" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderAdmin"
Runat="Server">

<table border="0" cellpadding="0" cellspacing="0" width="95%">

<tr>
<td>All Orders</td>

</tr>
<tr>

<td>
</td>

</tr>

CHAPTER 23 ■ MANAGING THE ORDERS 505

7249ch23.qxd 11/13/06 9:24 PM Page 505

<tr>
<td>

<asp:GridView ID="gridviewAllOrders" runat="server"
AutoGenerateColumns="false">

<Columns>
<asp:TemplateField HeaderText="Transaction ID">

<ItemTemplate>
<a href="OrderDetails.aspx?TransID=<%# Eval("TransactionID") %>&OrderID=

<%# Eval("OrderID") %>"><%# Eval("TransactionID") %>
</ItemTemplate>

</asp:TemplateField>
<asp:TemplateField HeaderText="Name">

<ItemTemplate>
<%# Eval("FirstName") %> <%# Eval("LastName") %>

<%# Eval("AddressLine") %> <%# Eval("AddressLine2") %>

<%# Eval("City") %>, <%# Eval("State") %>
<%# Eval("PostalCode") %>

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Email">

<ItemTemplate>
<%# Eval("Email") %>

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Phone">

<ItemTemplate>
<%# Eval("Phone") %>

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Order Date">

<ItemTemplate>
<%# Eval("OrderDate") %>

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Status">

<ItemTemplate>
<%# Eval("OrderStatusName") %>

</ItemTemplate>
</asp:TemplateField>
</Columns>
</asp:GridView>

</td>
</tr>

</table>

</asp:Content>

CHAPTER 23 ■ MANAGING THE ORDERS506

7249ch23.qxd 11/13/06 9:24 PM Page 506

How It Works

This HTML code is fairly straightforward. You added a GridView control with several columns to be data
bound. The individual columns are TransactionID and a formatted column that displays the name of the
customer with their address. Finally, the name of the customer is followed by the customer’s e-mail
address and phone number along with the order date and order status. You formatted the TransactionID
column as a hyperlink that will direct the user to the OrderDetails.aspx web form.

6. Now that you have created the web form and implemented the mechanics for an administrator to view
the orders, you need to populate the GridView control with the orders queried from the database. To do
so, add the following code:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.BusinessLogic;

public partial class Admin_Orders : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

if (!IsPostBack)
{

LoadOrders();
}

}

private void LoadOrders()
{

ProcessGetAllOrders getallorders = new ProcessGetAllOrders();

try
{

getallorders.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

CHAPTER 23 ■ MANAGING THE ORDERS 507

7249ch23.qxd 11/13/06 9:24 PM Page 507

gridviewAllOrders.DataSource = getallorders.ResultSet;
gridviewAllOrders.DataBind();

}
}

How It Works

In the Orders.aspx web form, gridviewAllOrders, which is a GridView control, is data bound to the
DataSet that is returned from the query of all the customers’ orders. The Invoke() method is called from
the ProcessGetAllOrders business logic class and finally will data bind the results to the GridView control.

The exercise is complete, and you can now address the details of allowing the administrator to view the details of
the order and eventually fulfill and ship the order.

Viewing the Order Details
The next portion of functionality is to view the individual order details. Implementing the
details of the orders will be similar to what you implemented for the customer account. This
has one major difference, however. For the customer account, the information was read-only
so that the customer could view all the information about their order but not modify it. For the
administrator access, only a portion of the order information will be read-only. For instance, the
products that have been purchased and the tax, shipping, and total will be read-only, but
the administrator will need to be able to update the order by modifying the status, the track-
ing information, and the ship date. This will all be handled in the order details section of the
application.

In the following exercise, you will implement the ability to view the order details.

Exercise: Viewing the Order Details

This exercise shows how to implement the functionality to allow the administrator to view the order details. Follow
these steps:

1. You have already created the stored procedure to query the order details; however, you need to popu-
late the different choices for the order status and add another stored procedure that will query the
Orders table by a specified order ID. Therefore, add the stored procedures and execute them:

CREATE PROCEDURE OrderStatus_Select

AS

SELECT OrderStatusID, OrderStatusName FROM OrderStatus

CREATE PROCEDURE OrdersByID_Select

@OrderID int

AS

CHAPTER 23 ■ MANAGING THE ORDERS508

7249ch23.qxd 11/13/06 9:24 PM Page 508

SELECT OrderDate, ShipDate,
OrderStatusID, TrackingNumber
FROM Orders
WHERE OrderID = @OrderID

How It Works

The OrderStatus_Select stored procedure simply selects both the OrderStatusID and the OrderStatusName
so that the result set can be displayed. Finally, the OrdersByID_Select stored procedure will query the
individual information from the Orders table based on the order ID that was selected.

2. In this step, you’ll add the new stored procedures to the Name enumeration located in the StoredProcedure
class in the data access layer. Then you’ll add two new classes to the Select directory and namespace
for the order status query. Add two new classes named OrderStatusSelectData and OrderSelectByIDData
with the following code included:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

namespace LittleItalyVineyard.DataAccess.Select
{

public class OrderStatusSelectData : DataAccessBase
{

public OrderStatusSelectData()
{

base.StoredProcedureName = StoredProcedure.Name.➥

OrderStatus_Select.ToString();
}

public DataSet Get()
{

DataSet ds;

DataBaseHelper dbhelper = new DataBaseHelper➥

(base.StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString);

return ds;
}

}
}

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

CHAPTER 23 ■ MANAGING THE ORDERS 509

7249ch23.qxd 11/13/06 9:24 PM Page 509

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class OrderSelectByIDData : DataAccessBase
{

private Orders _orders;

public OrderSelectByIDData()
{

StoredProcedureName = StoredProcedure.Name.➥

OrdersByID_Select.ToString();
}

public DataSet Get()
{

DataSet ds;

OrderSelectByIDDataParameters➥

_orderselectbyiddataparameters =➥

new OrderSelectByIDDataParameters(Orders);
DataBaseHelper dbhelper = new DataBaseHelper(StoredProcedureName);

ds = dbhelper.Run(base.ConnectionString ,
_orderselectbyiddataparameters.➥

Parameters);

return ds;
}

public Orders Orders
{

get { return _orders; }
set { _orders = value; }

}
}

public class OrderSelectByIDDataParameters
{

private Orders _orders;
private SqlParameter[] _parameters;

public OrderSelectByIDDataParameters(Orders orders)
{

Orders = orders;
Build();

}

CHAPTER 23 ■ MANAGING THE ORDERS510

7249ch23.qxd 11/13/06 9:24 PM Page 510

private void Build()
{
SqlParameter[] parameters =
{

new SqlParameter("@OrderID" , Orders.OrderID)
};

Parameters = parameters;
}

public Orders Orders
{

get { return _orders; }
set { _orders = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }
}

}
}

How It Works

The data access code is not too complex so far; you are simply looking to return a DataSet with all the
order status types. The OrderSelectByIDData class will query the individual record from the Orders
table based upon the order ID.

3. You’ll now move along to the business logic layer to add the necessary classes. Therefore, add
a new class named ProcessGetOrderStatus and a class named ProcessGetOrderByID to the
LittleItalyVineyard.BusinessLogic class library project with the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetOrderStatus : IBusinessLogic
{

private DataSet _resultset;

CHAPTER 23 ■ MANAGING THE ORDERS 511

7249ch23.qxd 11/13/06 9:24 PM Page 511

public ProcessGetOrderStatus()
{

}

public void Invoke()
{

OrderStatusSelectData orderstatusdata =➥

new OrderStatusSelectData();
ResultSet = orderstatusdata.Get();

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetOrderByID
{

private Orders _orders;
private DataSet _resultset;

public ProcessGetOrderByID()
{

}

public void Invoke()
{

OrderSelectByIDData orderbyid = new OrderSelectByIDData();
orderbyid.Orders = this.Orders;
ResultSet = orderbyid.Get();

CHAPTER 23 ■ MANAGING THE ORDERS512

7249ch23.qxd 11/13/06 9:24 PM Page 512

if (ResultSet.Tables[0].Rows.Count > 0)
{
if (ResultSet.Tables[0].Rows[0]["ShipDate"].ToString() != "")
{

Orders.ShipDate = Convert.ToDateTime(ResultSet.➥

Tables[0].Rows[0]➥

["ShipDate"].ToString());
}

Orders.TrackingNumber = ResultSet.➥

Tables[0].Rows[0]["TrackingNumber"].➥

ToString();
Orders.OrderStatusID = int.Parse(ResultSet.➥

Tables[0].Rows[0]➥

["OrderStatusID"].ToString());
}

}

public Orders Orders
{

get { return _orders; }
set { _orders = value; }

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

How It Works

The business logic layer code will simply implement the necessary Invoke() method and populate
the ResultSet property that can be used from the calling code for both of the classes. In the
ProcessGetOrderByID class, the Order class will be populated by iterating through the DataSet
returned. Regarding the ShipDate property, you need to first check whether it is a null value since the
property is a DateTime format. In other words, if the value is null, an exception will occur.

4. Now add the web form OrderDetails.aspx to the Admin directory, and associate it with the respective
master page. Upon doing so, add the following HTML code:

<%@ Page Language="C#" MasterPageFile="~/Admin/Admin.master"
AutoEventWireup="true"
CodeFile="OrderDetails.aspx.cs"
Inherits="Admin_OrderDetails"
Title="Admin Control Panel | Order Details" %>

CHAPTER 23 ■ MANAGING THE ORDERS 513

7249ch23.qxd 11/13/06 9:24 PM Page 513

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderAdmin"
Runat="Server">
<table border="0" cellpadding="0" cellspacing="0" width="75%">

<tr>
<td></td><td></td>

</tr>
<tr>

<td>
Transaction ID</td>

<td>
<asp:Label ID="labelTransactionID" runat="server"></asp:Label></td>

</tr>
<tr>

<td></td><td></td>
</tr>
<tr>

<td></td><td></td>
</tr>
<tr>

<td>
Purchased Items:</td>

<td>
<asp:GridView ID="gridviewOrderDetailsProducts" runat="server"

AutoGenerateColumns="false">
<Columns>

<asp:TemplateField HeaderText="Qty.">
<ItemTemplate>

<%# Eval("Quantity") %>
</ItemTemplate>

</asp:TemplateField>
<asp:TemplateField HeaderText="Product">

<ItemTemplate>
<%# Eval("ProductName") %>

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Price">

<ItemTemplate>
<%# Eval("Price" , "{0:c}")%>

</ItemTemplate>
</asp:TemplateField>

</Columns>
</asp:GridView>

</td>
</tr>
<tr>

<td></td><td></td>
</tr>

CHAPTER 23 ■ MANAGING THE ORDERS514

7249ch23.qxd 11/13/06 9:24 PM Page 514

<tr>
<td>

Shipped Date:</td>
<td>

<asp:TextBox ID="textShippedDate" runat="server"
CssClass="textField">

</asp:TextBox>
</td>

</tr>
<tr>

<td></td>
<td>

 </td>
</tr>
<tr>

<td>
Tracking Number:</td>

<td>
<asp:TextBox ID="textTrackingNumber" runat="server"

CssClass="textField"></asp:TextBox></td>
</tr>
<tr>

<td></td><td></td>
</tr>
<tr>

<td>
Order Status:</td>

<td>
<asp:DropDownList ID="dropdownlistOrderStatus" runat="server"
CssClass="textField">

</asp:DropDownList></td>
</tr>
<tr>

<td></td><td></td>
</tr>
<tr>

<td>
</td>
<td>

<table border="0" cellpadding="0" cellspacing="0"
style="width: 224px">

<tr>
<td style="width: 59px">

<asp:Button ID="commandReturn" runat="server" Text="Return"
CssClass="button" OnClick="commandReturn_Click" /></td>

</tr>
</table>

CHAPTER 23 ■ MANAGING THE ORDERS 515

7249ch23.qxd 11/13/06 9:24 PM Page 515

</td>
</tr>

</table>
</asp:Content>

How It Works

The HTML code you just added to the OrderDetails.aspx web form will display the general details of the
selected order along with the individual products that are contained in the order. In addition to the
order details, you will also have the ability to update the order with respect to the shipping date and
the tracking number, which I’ll discuss in the next exercise.

5. The code that needs to be added to the C# portion of the web form is fairly lengthy. However, you first
need to populate the order status types in the drop-down list, populate the individual products in the
order, and populate the shipping date and tracking number, as shown here:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;
using LittleItalyVineyard.Operational;

public partial class Admin_OrderDetails : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

if (!IsPostBack)
{

LoadOrderStatus();
LoadOrderDetails();

}
}

private void LoadOrderDetails()
{

ProcessGetOrderDetails processdetails =➥

new ProcessGetOrderDetails();
ProcessGetOrderByID processorder =➥

new ProcessGetOrderByID();

CHAPTER 23 ■ MANAGING THE ORDERS516

7249ch23.qxd 11/13/06 9:24 PM Page 516

OrderDetails orderdetails = new OrderDetails();
orderdetails.OrderID = int.Parse(Request.QueryString➥

["OrderID"]);
processdetails.OrderDetails = orderdetails;

Orders orders = new Orders();
orders.OrderID = int.Parse(Request.QueryString➥

["OrderID"]);
processorder.Orders = orders;

try
{

processdetails.Invoke();
processorder.Invoke();

}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

gridviewOrderDetailsProducts.DataSource =➥

processdetails.ResultSet;
gridviewOrderDetailsProducts.DataBind();

labelTransactionID.Text = Request.QueryString["TransID"];

if (orders.ShipDate != DateTime.MinValue)
{

textShippedDate.Text = orders.ShipDate.ToShortDateString();
}
textTrackingNumber.Text = orders.TrackingNumber;

dropdownlistOrderStatus.SelectedIndex =➥

dropdownlistOrderStatus.Items.➥

IndexOf(dropdownlistOrderStatus.Items.FindByValue➥

(orders.OrderStatusID.ToString()));
}

private void LoadOrderStatus()
{

ProcessGetOrderStatus processorderstatus =➥

new ProcessGetOrderStatus();

CHAPTER 23 ■ MANAGING THE ORDERS 517

7249ch23.qxd 11/13/06 9:24 PM Page 517

try
{

processorderstatus.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

dropdownlistOrderStatus.DataTextField = "OrderStatusName";
dropdownlistOrderStatus.DataValueField = "OrderStatusID";
dropdownlistOrderStatus.DataSource =➥

processorderstatus.ResultSet;
dropdownlistOrderStatus.DataBind();

}
}

How It Works

As mentioned, you had to address a number of issues in the OrderDetails.aspx web form. The first item
was to populate the dropdownlistOrderStatus DropDownList control with all the available status types
for the order. You accomplished this by utilizing the ProcessGetOrderStatus class from the business
logic layer of the architecture. You data bound the resulting DataSet after setting the DataTextField
property to the OrderStatusName and the DataValueField property to the OrderStatusID fields so that
the DropDownList control will show the text name of the status and the value to the associated status
ID of the name. To finalize this code in this exercise, you query specifically the ship date and the track-
ing number and populate the respective controls, taking into account that if the ShipDate property is
the minimum value of a date, the text box will not be populated and will be left as an empty string.

You now have the individual status types populated in the DropDownList control. You can now move along to
addressing the remaining items needed, which I’ll discuss in the following section.

Creating the Order Fulfillment
The administrator now has the ability to view all the orders that the customers have placed.
Let’s reverse a bit to review how an order is placed from a customer: first, the customer enters
their credit card information, and upon acceptance, a new order appears in the system. This
new order will eventually have to be fulfilled. Therefore, the default status for a new order that
is placed is New. The administrator will physically need to obtain the items that were purchased,
prepare the packaging, and make arrangements with the shipping company that will be deliv-
ering the goods to the customer. When making these arrangements, the shipping company
will provide the administrator with a tracking number. The administrator will need to add this
to the order for recording-keeping purposes and to inform the customer that they can track
the progress of their shipment while it is en route to their delivery destination.

In the following exercise, you’ll implement functionality to allow the administrator to
update the order with this information.

CHAPTER 23 ■ MANAGING THE ORDERS518

7249ch23.qxd 11/13/06 9:24 PM Page 518

Exercise: Fulfilling the Order

This exercise show how to implement the functionality where an administrator can fulfill the order and update the
status, the tracking information, and the date the goods are shipped. Follow these steps:

1. As with most of the exercises you have dealt with, you will initiate the implementation at the database
level by creating the stored procedure that is necessary to update the status of a specific order:

CREATE PROCEDURE Orders_Update

@OrderID int,
@OrderStatusID int,
@ShipDate smalldatetime,
@TrackingNumber nvarchar(50)

AS

UPDATE Orders
SET OrderStatusID = @OrderStatusID,
ShipDate = @ShipDate,
TrackingNumber = @TrackingNumber
WHERE OrderID = @OrderID

How It Works

The Orders_Update stored procedure accepts four parameters: @OrderID, @OrderStatusID, @ShipDate,
and @TrackingNumber. All the information is updated in the Orders table based on the OrderID.

2. You will now move to the data access tier of the architecture. Similar to other exercises, add the name of
the new stored procedure created in the enumeration. In this implementation will be an update to the
database, so add a new class to the Update directory or namespace in the LittleItalyVineyard.DataAccess
class library project named OrderUpdateData. In this new class, add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Update
{

public class OrderUpdateData : DataAccessBase
{

private Orders _orders;
private OrderUpdateDataParameters _orderupdatedataparameters;

CHAPTER 23 ■ MANAGING THE ORDERS 519

7249ch23.qxd 11/13/06 9:24 PM Page 519

public OrderUpdateData()
{

StoredProcedureName = StoredProcedure.Name.➥

Orders_Update.ToString();
}

public void Update()
{

_orderupdatedataparameters =➥

new OrderUpdateDataParameters(Orders);
DataBaseHelper dbhelper =➥

new DataBaseHelper(StoredProcedureName);
dbhelper.Parameters =➥

_orderupdatedataparameters.Parameters;
dbhelper.Run();

}

public Orders Orders
{

get { return _orders; }
set { _orders = value; }

}
}

public class OrderUpdateDataParameters
{

private Orders _orders;
private SqlParameter[] _parameters;

public OrderUpdateDataParameters(Orders orders)
{

Orders = orders;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@OrderID", Orders.OrderID) ,
new SqlParameter("@OrderStatusID" ,➥

Orders.OrderStatusID) ,
new SqlParameter("@ShipDate", Orders.ShipDate) ,
new SqlParameter("@TrackingNumber", Orders.TrackingNumber)

};

Parameters = parameters;
}

CHAPTER 23 ■ MANAGING THE ORDERS520

7249ch23.qxd 11/13/06 9:24 PM Page 520

public Orders Orders
{

get { return _orders; }
set { _orders = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

How It Works

The code in the data access layer will be similar to that of the others. An associated parameters class
will be utilized to execute the stored procedure Orders_Update.

3. The next task will be the business logic tier of the application. Therefore, proceed to the
LittleItalyVineyard.BusinessLogic class library project, and add a new class named ProcessUpdateOrder.
Add the following code to the newly created class:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Update;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessUpdateOrder : IBusinessLogic
{

private Orders _orders;

public ProcessUpdateOrder()
{

}

public void Invoke()
{

OrderUpdateData orderupdate = new OrderUpdateData();
orderupdate.Orders = this.Orders;
orderupdate.Update();

}

CHAPTER 23 ■ MANAGING THE ORDERS 521

7249ch23.qxd 11/13/06 9:24 PM Page 521

public Orders Orders
{

get { return _orders; }
set { _orders = value; }

}
}

}

How It Works

The ProcessUpdateOrder class in the business logic tier of the architecture uses the required Invoke()
method to pass the common class Orders into the data access portion and eventually update the order
specified.

4. Now you’ll proceed to the OrderDetails.aspx web form. Now that you are going to be enabling the
administrator to enter the update information, you need to provide a simple method in which the adminis-
trator can enter a date value for when the order ships. To do so, you will add a Calendar control and an
image control, as shown in the following updated HTML code:

<td>
<asp:TextBox ID="textShippedDate" runat="server"

CssClass="textField">
</asp:TextBox>

<asp:ImageButton ID="imagebuttonDatePicker" runat="server"
ImageUrl="~/Images/icon-calendar.gif"
OnClick="imagebuttonDatePicker_Click" />
<asp:Calendar ID="calendarDatePicker"

runat="server
OnSelectionChanged="calendarDatePicker_SelectionChanged"

Visible="False" Width="128px"></asp:Calendar>
</td>

How It Works

You added a button with an associated image along with a Calendar control where the Visible property
is set to false.

5. The HTML code is in place for allowing the administrator to choose a date from the Calendar control,
so you now need to address the C# code of enabling this functionality:

protected void imagebuttonDatePicker_Click(object sender ,➥

ImageClickEventArgs e)
{

if (calendarDatePicker.Visible)
{

calendarDatePicker.Visible = false;
}
else
{

CHAPTER 23 ■ MANAGING THE ORDERS522

7249ch23.qxd 11/13/06 9:24 PM Page 522

calendarDatePicker.Visible = true;
}

}

protected void calendarDatePicker_SelectionChanged(object sender ,➥

EventArgs e)
{

textShippedDate.Text = calendarDatePicker.SelectedDate.➥

ToShortDateString();
calendarDatePicker.Visible = false;

}

How It Works

The code added spans two events. These two events are the click event of the image button and the
selection changed event of the Calendar control. I’ll first explain the image button click event: the code
will first check whether the Calendar control is visible, and if it is, the calendar’s visible property will be
set to false. If not, the calendar’s visible property will be set to true. This will enable the Calendar con-
trol to be displayed when the administrator clicks the image button, and if they click the image button
when the calendar is being displayed, the calendar display will simply be removed or the Visible prop-
erty set to false. Lastly, the selection changed event of the Calendar control, which will be fired when
the administrator selects a date on the calendar, will take that value and populate the textShippedDate
text box with that date in a short date format. After the text box is populated, the calendar’s display will
be removed.

6. You now need to implement the code that will allow for updating the order. However, you need to first
add a command button to the OrderDetails.aspx web form, followed by adding a click event to the
commandUpdate button, as shown here:

<tr>
<td style="width: 115px">

</td>
<td style="width: 100px">

<table border="0" cellpadding="0" cellspacing="0"
style="width: 224px">

<tr>
<td style="width: 59px">

<asp:Button ID="commandReturn" runat="server" Text="Return"
CssClass="button" OnClick="commandReturn_Click" /></td>

<td style="width: 62px">
<asp:Button ID="commandUpdate" runat="server" Text="Update"

OnClick="commandUpdate_Click" CssClass="button" /></td>
</tr>

</table>
</td>

</tr>

CHAPTER 23 ■ MANAGING THE ORDERS 523

7249ch23.qxd 11/13/06 9:24 PM Page 523

You have added the HTML for the commandUpdate button. The following is the C# code portion in the
click event:

protected void commandUpdate_Click(object sender , EventArgs e)
{

Orders orders = new Orders();
ProcessUpdateOrder updateorder = new ProcessUpdateOrder();

orders.OrderID = int.Parse(Request.QueryString["OrderID"]);
orders.OrderStatusID = int.Parse➥

(dropdownlistOrderStatus.SelectedItem.Value);
orders.ShipDate = Convert.ToDateTime(textShippedDate.Text);
orders.TrackingNumber = textTrackingNumber.Text;

updateorder.Orders = orders;

try
{

updateorder.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

Response.Redirect("Orders.aspx");
}

How It Works

The click event, which will ultimately update the order that has been selected, will utilize the
ProcessUpdateOrder class from in the business logic tier. The information that needs to be updated will
be populated from the Orders common class and subsequently passed to the business logic class.
Finally, the Invoke() method will be called from in a try/catch statement, and if there are no errors, the
user will be redirected to the Orders.aspx web form where the updates will be reflected.

In this exercise, you enabled the administrator to add or update the remaining pieces of information regarding
a specific customer order.

Informing the Customer
All your customers are important to you because you want them to return to the application
and make additional purchases. With that said, it is always a good idea to keep each customer
informed about what is going on with their order each step of the way. Simply put, each time
the status changes for an order, the customer should be notified of the update status. You’ll
implement this functionality in the following exercise.

Exercise: Keeping the Customer Informed

CHAPTER 23 ■ MANAGING THE ORDERS524

7249ch23.qxd 11/13/06 9:24 PM Page 524

In this exercise, you will implement the ability to automatically e-mail the customer when you have updated their
order. Follow these steps:

1. Since the method used to update the customer will be via e-mail, you will revisit the EmailManager
class found in the LittleItalyVineyard.Operational class library you created in Chapter 14. Proceed to the
OrderDetails.aspx web form and to the C# code portion. Add the LittleItalyVineyard.Operational name-
space to the top of the code as follows:

using LittleItalyVineyard.Operational;

2. Prior to adding the code that will populate the EmailManager class and eventually send the e-mail, you
need the e-mail address of the customer to which to send the e-mail message. To accomplish this, you
will proceed to the Orders.aspx web form and add a query string to the hyperlink that displays the
transaction ID. Therefore, update the following HTML in the Orders.aspx web form:

<asp:TemplateField HeaderText="Transaction ID">
<ItemTemplate>
<a href="OrderDetails.aspx?TransID=

<%# Eval("TransactionID") %>&OrderID=
<%# Eval("OrderID") %>&Email=<%# Eval("Email") %>">

<%# Eval("TransactionID") %>
</ItemTemplate>

</asp:TemplateField>

How It Works

As mentioned, a new query string is added to the hyperlink named Email; it uses the Eval data-binding
method to populate the query string with the customer’s e-mail address.

3. Now that you will be able to easily obtain the customer’s e-mail address as a result of the newly added
query string, proceed to the commandUpdate click event in the OrderDetails.aspx web form. The fol-
lowing code will populate the content of the e-mail message and finally send the update message:

protected void commandUpdate_Click(object sender , EventArgs e)
{

Orders orders = new Orders();
ProcessUpdateOrder updateorder = new ProcessUpdateOrder();

orders.OrderID = int.Parse(Request.QueryString["OrderID"]);
orders.OrderStatusID = int.Parse(dropdownlistOrderStatus.➥

SelectedItem.Value);
orders.ShipDate = Convert.ToDateTime(textShippedDate.Text);
orders.TrackingNumber = textTrackingNumber.Text;

updateorder.Orders = orders;

try
{
updateorder.Invoke();

CHAPTER 23 ■ MANAGING THE ORDERS 525

7249ch23.qxd 11/13/06 9:24 PM Page 525

EmailManager emailmngr = new EmailManager();
EmailContents mailcontents = new EmailContents();

mailcontents.To = Request.QueryString["Email"];
mailcontents.Subject = "Little Italy Vineyard Update - Order ID: " +
Request.QueryString["OrderID"];
mailcontents.Body = "Your order has been updated. ➥

Please log into your account for details.";

emailmngr.Send(mailcontents);

if (!emailmngr.IsSent)
{

Response.Redirect("../ErrorPage.aspx");
}

}
catch
{
Response.Redirect("../ErrorPage.aspx");

}

Response.Redirect("Orders.aspx");
}

How It Works

The EmailContents struct is first populated with all the basic information from the customer’s order and
then is used to populate the EmailManager class to execute sending the e-mail message from the
LittleItalyVineyard.Operational class library, which informs the customer that the status of their order
has changed and they are able to view the updates by logging into their account.

In this exercise, you added functionality to keep the customer informed when their order has been updated.

Issuing Refunds
As the company sells the products on its website to customers, the products are paid in full by
means of a credit card payment when an order is placed. However, sometimes the company
will have to issue a refund to the customer for their purchase. This could be for many reasons;
for instance, maybe there is going to be a long delay when fulfilling the order, and as a result,
the customer does not want to wait. They instead want to cancel the order and get a refund of
the money they spent.

As part of the overall fulfillment of the orders, the administrator will certainly need the
ability to refund the amount of an order that has been placed by a customer. In the following
exercise, you’ll implement the functionality to refund an order.

CHAPTER 23 ■ MANAGING THE ORDERS526

7249ch23.qxd 11/13/06 9:24 PM Page 526

Exercise: Refunding an Order

For this final exercise in the chapter, you will add the necessary functionality to allow the administrator to issue
a refund for an order that has already been placed by a customer. Follow these steps:

1. Return to the PayPalManager class located in the LittleItalyVineyard.Operational class library project. In
this class, you need to add a method that will refund a transaction. Examine the following code in the
method that you need to add:

public void RefundTransaction(string TransactionID)
{

RefundTransactionRequestType refundRequest =➥

new RefundTransactionRequestType();
BasicAmountType amount = new BasicAmountType();
amount.currencyID = CurrencyCodeType.USD;
refundRequest.Memo = "Transaction ID: " + TransactionID;
refundRequest.RefundType = RefundPurposeTypeCodeType.Full;
refundRequest.TransactionID = TransactionID;
refundRequest.Version = "2.0";

RefundTransactionReq request = new RefundTransactionReq();
request.RefundTransactionRequest = refundRequest;

try
{
RefundTransactionResponseType response =➥

service.RefundTransaction(request);
string errors = CheckForErrors(response);

if (errors == string.Empty)
{
IsSubmissionSuccess = true;

}
else
{

IsSubmissionSuccess = false;
SubmissionError = errors;

}
}
catch (Exception ex)
{

throw ex;
}

}

CHAPTER 23 ■ MANAGING THE ORDERS 527

7249ch23.qxd 11/13/06 9:24 PM Page 527

How It Works

In the RefundTransaction method, the transaction ID will be passed as a string parameter. You’ll use the
PayPal application programming interfaces (APIs) to issue a full refund to this order, which is specified
by the transaction ID.

2. The next task is to add a command button HTML code to the OrderDetails.aspx web form and then add
the associated click event. This code in the click event will initiate the refund of the customer’s order:

<td>
<table border="0" cellpadding="0" cellspacing="0" style="width: 224px">

<tr>
<td style="width: 59px">

<asp:Button ID="commandReturn" runat="server" Text="Return"
CssClass="button" OnClick="commandReturn_Click" /></td>

<td style="width: 62px">
<asp:Button ID="commandUpdate" runat="server"

Text="Update"
OnClick="commandUpdate_Click"
CssClass="button" /></td>

<td style="width: 100px">
<asp:Button ID="commandRefund"
runat="server"

Text="Issue Refund"
OnClick="commandRefund_Click"
CssClass="button" />
</td>

</tr>
</table>

</td>

protected void commandRefund_Click(object sender , EventArgs e)
{

PayPalManager paypal = new PayPalManager();
paypal.RefundTransaction(Request.QueryString["TransID"]);

}

How It Works

The code to initiate the refund simply instantiates the PayPalManager class and then calls the Refund-
Transaction method, passing in the TransID query string.

3. After implementing the refunding functionality, you will need to update the order in your database. The
code will be similar to what you added in the update click event. The updated code is as follows:

protected void commandRefund_Click(object sender , EventArgs e)
{

PayPalManager paypal = new PayPalManager();

CHAPTER 23 ■ MANAGING THE ORDERS528

7249ch23.qxd 11/13/06 9:24 PM Page 528

paypal.RefundTransaction(Request.QueryString["TransID"]);

Orders orders = new Orders();
ProcessUpdateOrder updateorder = new ProcessUpdateOrder();

int refundedstatustype = 3;

orders.OrderID = int.Parse(Request.QueryString["OrderID"]);
orders.OrderStatusID = refundedstatustype;
orders.ShipDate = (DateTime) SqlDateTime.Null;
updateorder.Orders = orders;

try
{
updateorder.Invoke();

}
catch
{
Response.Redirect("../ErrorPage.aspx");

}

Response.Redirect("Orders.aspx");
}

How It Works

As mentioned, the code to update the order is similar to the code added in the previous exercise.
However, there are a few differences. The first item that is different is that you need to add a new
namespace to the code in the declarations:

using System.Data.SqlTypes;

You need this so you can set the ShipDate of the Orders common class to the SqlDateTime.Null value
and then cast it to a DateTime data type. This will prevent an exception when updating the Orders table
because you are not going to be adding a ShipDate. Lastly, you will set the status of the order to the
refunded status, which has an ID of 3 in the OrderStatus table.

4. For the final task, you will need to be able to alert the customer that their order has been refunded.
Similar to how you alerted the customer when the order was fulfilled, you will add the following code to
send an e-mail message indicating the refund:

protected void commandRefund_Click(object sender , EventArgs e)
{

PayPalManager paypal = new PayPalManager();
paypal.RefundTransaction(Request.QueryString["TransID"]);

Orders orders = new Orders();
ProcessUpdateOrder updateorder = new ProcessUpdateOrder();

int refundedstatustype = 3;

CHAPTER 23 ■ MANAGING THE ORDERS 529

7249ch23.qxd 11/13/06 9:24 PM Page 529

orders.OrderID = int.Parse(Request.QueryString["OrderID"]);
orders.OrderStatusID = refundedstatustype;
orders.ShipDate = (DateTime) SqlDateTime.Null;
updateorder.Orders = orders;

try
{

updateorder.Invoke();

if (paypal.IsSubmissionSuccess)
{
EmailManager emailmngr = new EmailManager();
EmailContents mailcontents = new EmailContents();

mailcontents.To = Request.QueryString["Email"];
mailcontents.Subject =➥

"Little Italy Vineyard Update - Order ID: " +
Request.QueryString["OrderID"];

mailcontents.Body = "Your order has been refunded. ➥

Please log into your account for details.";

emailmngr.Send(mailcontents);

if (!emailmngr.IsSent)
{

Response.Redirect("../ErrorPage.aspx");
}

}
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

Response.Redirect("Orders.aspx");
}

How It Works

The final code added to the click event of the command button for issuing a refund is to utilize the
EmailManager class once again along with the associated EmailContents struct. Basic information is
provided in the e-mail message to inform the customer that their order has been refunded. Finally, if
the e-mail is sent successfully by checking the IsSent property, the administrator will be redirected to
the Orders.aspx web form where the updated information will be displayed.

The administrator is now able to issue a refund for a customer’s order.

CHAPTER 23 ■ MANAGING THE ORDERS530

7249ch23.qxd 11/13/06 9:24 PM Page 530

Summary
Throughout this chapter, you enabled the functionality to manage the orders that customers
have placed. You built functionality to view the orders as well as the details in the individual
order. Lastly, you enabled the application to update the Orders table with the date the order
will ship and with the tracking information. In addition to the updating, you expanded the
PayPal APIs to issue a refund for an order if necessary.

CHAPTER 23 ■ MANAGING THE ORDERS 531

7249ch23.qxd 11/13/06 9:24 PM Page 531

7249ch23.qxd 11/13/06 9:24 PM Page 532

Promoting the Site and
Upselling

You are nearing the end of this book, and you have addressed quite a bit of functionality up
to this point. A customer has the ability to order products from your catalog; in addition, an
administrator has the ability to fulfill orders, add new products to the catalog, and make any
alterations necessary to existing products within the product catalog. Therefore, the functional-
ity thus far could be considered sufficient for the first version of your e-commerce application.

However, prior to releasing the first version of the application, you want to have the ability
to promote the products that you or your clients are selling. For example, say you have a fast-
food restaurant. A customer will go inside the store (or through the drive-through) and will
place their order. Inevitably, the person taking your order will ask you one of the following
questions: Would you like fries with that? Would you like to “value size” your order? Would you
like dessert with that? All of these questions relate to the concept of upselling. The restaurant
has already sold a product to you, but they are attempting to sell an add-on product or increase
the volume or size of the order you just placed.

Selling merchandise via e-commerce is not much different. However, in place of asking to
“value size” a product, the most common technique is to display products that are related to
what the customer is already buying in the hope that they will add the related product to their
final order.

In this chapter, I will discuss how to implement such techniques in an attempt to maximize
your sales. More specifically, I will discuss and offer exercises for the following topics:

• Upselling by showing related products

• Sending e-newsletters to advertise sales and product information

Upselling with Related Products
When a customer makes a purchase from your online store, you want to allow them to view
other closely related products that are for sale. Take, for example, when a customer adds a bottle
or several bottles of wine to their shopping cart; on the shopping cart page, you should be able
to show them some products that have been purchased by other customers who made similar
purchases. Displaying this information for customers can often result in the customers viewing
the associated product and saying to themselves, “That looks good—I’m going to purchase

533

C H A P T E R 2 4

■ ■ ■

7249ch24.qxd 11/13/06 9:25 PM Page 533

that too!” If the customer adds this related product to their order, you have just increased your
sales by means of upselling.

Upselling is common with e-commerce applications, so you have probably already seen it
in action. Therefore, the following exercise will explain all the details of implementing upselling
into your e-commerce application for Little Italy Vineyards.

Exercise: Upselling

This exercise shows how to display related products to the customers when they add products to their shopping
carts. The related products will be based on querying orders placed by other customers who have ordered the
same products. Follow these steps:

1. At the database level, you need to create a stored procedure that queries the necessary information
and thus returns the values for display to the customer. Here’s the stored procedure script:

CREATE PROCEDURE ProductPromotion_Select

@ProductID int

AS

SELECT
ProductID,
ProductName,
SUBSTRING(Description, 1, 150) + '...'
AS Description

FROM Products

WHERE ProductID IN
(

SELECT TOP 5 details2.ProductID
FROM OrderDetails details1
INNER JOIN OrderDetails details2
ON details1.OrderID = details2.OrderID
WHERE details1.ProductID = @ProductID
AND details2.ProductID != @ProductID
GROUP BY details2.ProductID

)

How It Works

With the ProductPromotion_Select stored procedure, the goal is to query the Products table for five
purchases of the same product by other customers. The really effective part of this stored procedure is
within the WHERE clause because a subquery is used. In the subquery, the top five results are taken
from the OrderDetails table, which is inner joined to itself, so you can display any other products that
were included in the other customers’ completed orders (excluding the product that the current customer
has just added to their shopping cart); this is how you find the related products.

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING534

7249ch24.qxd 11/13/06 9:25 PM Page 534

2. After adding and executing the stored procedure script, now move to the data access tier and more
specifically the LittleItalyVineyard.DataAccess class library project. First add the name of the newly
created stored procedure to the Name enumeration. Then, in the Select directory and namespace, add
the new class, ProductPromotionSelectData, with the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Select
{

public class ProductPromotionSelectData : DataAccessBase
{

private Product _product;

public ProductPromotionSelectData()
{
base.StoredProcedureName = StoredProcedure.Name.➥

ProductPromotion_Select.ToString();
}

public DataSet Get()
{

DataSet ds;

ProductPromotionSelectDataParameters _productpromotion =➥

new ProductPromotionSelectDataParameters(Product);
DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
ds = dbhelper.Run(base.ConnectionString , ➥

_productpromotion.Parameters);

return ds;
}

public Product Product
{

get { return _product; }
set { _product = value; }

}
}

public class ProductPromotionSelectDataParameters
{

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 535

7249ch24.qxd 11/13/06 9:25 PM Page 535

private Product _product;
private SqlParameter[] _parameters;

public ProductPromotionSelectDataParameters(Product product)
{

Product = product;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@ProductID" , Product.ProductID)
};

Parameters = parameters;
}

public Product Product
{

get { return _product; }
set { _product = value; }

}

public SqlParameter[] Parameters
{

get { return _parameters; }
set { _parameters = value; }

}
}

}

3. The next step is to proceed to the business logic portion of the code and more specifically the
LittleItalyVineyard.BusinessLogic class library project. Add a new class named ProcessGetPromotions
with the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessGetPromotions : IBusinessLogic

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING536

7249ch24.qxd 11/13/06 9:25 PM Page 536

{
private DataSet _resultset;
private Product _product;

public ProcessGetPromotions()
{

}

public void Invoke()
{

ProductPromotionSelectData promotiondata =➥

new ProductPromotionSelectData();
promotiondata.Product = this.Product;
ResultSet = promotiondata.Get();

}

public Product Product
{

get { return _product; }
set { _product = value; }

}

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

4. Now you’ll incorporate the functionality into the presentation tier of the application. In this case, you
need to address two aspects. First, you need to adjust the AddToCart.aspx web form, and then you
need to adjust the ShoppingCart.aspx web form. So, add the following Hypertext Markup Language
(HTML) code to the AddToCart.aspx web form:

protected void Page_Load(object sender , EventArgs e)
{

LittleItalyVineyard.Common.ShoppingCart shoppingcart =➥

new LittleItalyVineyard.Common.ShoppingCart();
shoppingcart.ProductID = int.Parse(Request.QueryString["ProductID"]);
shoppingcart.CartGUID = CartGUID;
shoppingcart.Quantity = 1;

ProcessAddShoppingCart procshoppingcart =➥

new ProcessAddShoppingCart();
procshoppingcart.ShoppingCart = shoppingcart;

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 537

7249ch24.qxd 11/13/06 9:25 PM Page 537

try
{

procshoppingcart.Invoke();
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

Response.Redirect("ShoppingCart.aspx?ProductID=" +
Request.QueryString["ProductID"]);

}

How It Works

In the page load event of the AddToCart.aspx web form, there is no major addition in terms of functional-
ity. In fact, the only addition is a new query string, ProductID, that is appended to the ShoppingCart.aspx
redirection where the value is taken from the same query string that is passed into the AddToCart.aspx
web form.

5. Now, you will address the ShoppingCart.aspx where you first need to add the following bold HTML
code to the original ShoppingCart.aspx web form:

<%@ Page Language="C#" MasterPageFile="~/Main.master"
AutoEventWireup="true" CodeFile="ShoppingCart.aspx.cs"
Inherits="ShoppingCart" Title="Little Italy Vineyard | Shopping Cart" %>

<asp:Content ID="Content1" ContentPlaceHolderID="contentplaceholderMain"
Runat="Server">

<table cellpadding="0" cellspacing="0" border="0" width="100%">
<tr>

<td style="width: 11px"><img src="images/spacer.gif"
width="10" height="15" /></td>

<td width="100%"></td>
<td>

</td>
</tr>
<tr>

<td style="width: 11px"></td>
<td>

<table cellpadding="0" cellspacing="0" border="0"
width="100%">

<tr>
<td width="16%" align="center">Remove
</td>
<td width="30%">Product</td>
<td width="17%" align="center">Quantity
</td>

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING538

7249ch24.qxd 11/13/06 9:25 PM Page 538

<td width="18%" align="center">Unit Cost
</td>

<td width="19%" align="center">Subtotal
</td>

</tr>
</table>

</td>
<td></td>

</tr>
<tr>

<td style="width: 11px"></td>
<td class="prodUnderlineBG" width="100%">

</td>
<td></td>

</tr>
<tr><td style="width: 11px">

</td></tr>
<tr>

<td style="width: 11px"></td>
<td>

<asp:GridView ID="gridviewShoppingCart"
runat="server" AutoGenerateColumns="false"
DataKeyNames="Quantity,ShoppingCartID"

OnRowDataBound="gridviewShoppingCart_
RowDataBound" Width="100%" BorderWidth="0px"
CellPadding="2" ShowHeader="false">

<Columns>
<asp:TemplateField ItemStyle-Width="16%"

ItemStyle-HorizontalAlign="center">
<ItemTemplate>

<asp:CheckBox ID="checkboxDelete" runat="server" />
</ItemTemplate>

</asp:TemplateField>
<asp:TemplateField ItemStyle-Width="30%">

<ItemTemplate>
<%# Eval("ProductName") %>

</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField ItemStyle-Width="17%"

ItemStyle-HorizontalAlign="center">
<ItemTemplate>

<asp:TextBox id="textQuantity" runat="server"
Columns="4" MaxLength="3" Text='<%# Eval("Quantity") %>'
width="30px" CssClass="textfield" />

</ItemTemplate>
</asp:TemplateField>

<asp:TemplateField ItemStyle-Width="18%"

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 539

7249ch24.qxd 11/13/06 9:25 PM Page 539

ItemStyle-HorizontalAlign="center">
<ItemTemplate>

<%# Eval("UnitPrice" , "{0:c}")%>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField ItemStyle-Width="19%"

ItemStyle-HorizontalAlign="center">
<ItemTemplate>

<%# Eval("TotalPrice" , "{0:c}")%>
</ItemTemplate>

</asp:TemplateField>
</Columns>
</asp:GridView>

</td>
<td></td>

</tr>
<tr><td style="width: 11px">

</td></tr>
<tr>

<td style="width: 11px"></td>
<td class="prodUnderlineBG" width="100%">

</td>
<td></td>

</tr>
<tr>

<td style="width: 11px"></td>
<td class="prodUnderlineBG" width="100%">

</td>
<td></td>

</tr>
<tr><td style="width: 11px">

</td></tr>
<tr>

<td style="width: 11px"></td>
<td align="right">

<table border="0" cellpadding="0" cellspacing="0">
<tr>

<td>Total:</td>
<td style="width: 83px;" align="center">

<asp:Label ID="labelTotal" runat="server" Width="100%"></asp:Label></td>
</tr>

</table>
</td>
<td></td>

</tr>
<tr><td style="width: 11px">

</td></tr>

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING540

7249ch24.qxd 11/13/06 9:25 PM Page 540

<tr>
<td style="width: 11px">
</td>

<td align="right" style="text-align: center">
<asp:Panel ID="panelPromotion" runat="server"

Height="50px" Visible="False" Width="85%">
Customers have also purchased the following:

<asp:GridView ID="gridviewAssociated" runat="server"

ShowHeader="False" Width="100%" AutoGenerateColumns="false">
<Columns>
<asp:TemplateField>
<ItemTemplate>

<a href="ProductDetails.aspx?ProductID=<%# Eval("ProductID")%>">
<%# Eval("ProductName") %>

</ItemTemplate>
<ItemStyle Width="30%" />

</asp:TemplateField>
<asp:TemplateField>
<ItemTemplate>

<%# Eval("Description") %>
</ItemTemplate>

<ItemStyle Width="70%" />
</asp:TemplateField>
</Columns>
</asp:GridView>
</asp:Panel>
 </td>

<td>
</td>

</tr>
<tr>

<td style="width: 11px; height: 22px"></td>
<td align="right" style="height: 22px">

<asp:Button ID="commandContinueShopping" runat="server"
OnClick="commandContinueShopping_Click" Text="Continue Shopping"
CssClass="button" Width="136px" />

<asp:Button ID="commandUpdate" runat="server"

OnClick="commandUpdate_Click" Text="Update" CssClass="button" />

<asp:Button ID="commandCheckout" runat="server"

OnClick="commandCheckout_Click" Text="Check Out" CssClass="button" />

</td>
<td style="height: 22px"></td>

</tr>

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 541

7249ch24.qxd 11/13/06 9:25 PM Page 541

<tr><td style="width: 11px"><img src="images/spacer.gif"
width="1" height="15" /></td></tr>

</table>
</asp:Content>

How It Works

In this HTML code, you first added a new panel named panelPromotion, and in the panel control there
is a GridView control named gridviewAssociated. The panel control’s Visible property is set to False, so
for it to display, you will need to set the Visible property to true. The reasoning for this is that when the
e-commerce application first starts or a new product is added to the product catalog, there will be
a period of time that zero orders have been placed for the product, thus not being related with any
other orders. When this is the case, you will not show any results in the panel, thus keeping the Visible
property set to False.

6. Now add the code that will show the customer’s related products within the ShoppingCart.aspx web
form after adding a new item to the shopping cart:

protected void Page_Load(object sender , EventArgs e)
{

if (!IsPostBack)
{

LoadShoppingCart();
LoadPromotion();

}
}

private void LoadPromotion()
{

ProcessGetPromotions getpromotions = new ProcessGetPromotions();
Product product = new Product();

if (Request.QueryString["ProductID"] != null)
{

product.ProductID = int.Parse(Request.QueryString["ProductID"]);
}
else
{

return;
}

getpromotions.Product = product;

try
{

getpromotions.Invoke();

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING542

7249ch24.qxd 11/13/06 9:25 PM Page 542

if (getpromotions.ResultSet.Tables[0].Rows.Count > 0)
{

panelPromotion.Visible = true;
gridviewAssociated.DataSource = getpromotions.ResultSet;
gridviewAssociated.DataBind();

}
}
catch
{

Response.Redirect("ErrorPage.aspx");
}

}

How It Works

The code added will first call the method LoadPromotion from within the page load event. In the
LoadPromotion method, the code will first instantiate the ProcessGetPromotions class along with
a new Product common class. From that point, you will check whether there is a ProductID query
string. This needs to be checked because if the user is navigating to the shopping cart page from
a location that does not provide a query string, you will simply exit the method that is specified by the
return keyword in the else portion of the If statement. However, when there is a specified query string,
you will cast the query string of the product ID to an integer data type and set the ProductID property of
the Product common class. Moving along, the Product property of the ProcessGetPromotions class will
be set to the Product class that was earlier instantiated, and then the Invoke() method is wrapped within
a try/catch statement and will be called to query the related products. The ResultSet DataSet property
is then checked to determine whether there are any resulting records. If there are, the panelPromotion’s
Visible property is set to true, and subsequently the gridviewAssociated GridView control will be data
bound to the ResultSet. If there are no resulting records, the code will continue leaving the method,
thus keeping the panelPromotion control’s Visible property set to False.

In this exercise, you established some new functionality in an attempt to upsell to customers as they add products
to their shopping cart. You should keep the upselling simple in an effort not to annoy the customer but instead to
simply show related products where they can easily see them.

Promoting with the E-newsletter
Another technique to promote and advertise the products for sale is to keep the customers
informed by means of a newsletter that is delivered as an e-mail message. In this e-mail mes-
sage, you might announce a sale or perhaps an end-of-the-season special. You want to be able
to broadcast these messages to all the subscribed customers. The following exercise shows
how to implement the e-newsletter.

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 543

7249ch24.qxd 11/13/06 9:25 PM Page 543

Exercise: Implementing the E-newsletter

This exercise shows how to compile a single newsletter and have it broadcast to all the subscribed customers. It
will also provide functionality to allow a customer to be removed from the subscribed newsletter list at any time.
Follow these steps:

1. Once again you will start at the database level and add the necessary stored procedure. With that said,
add and execute the following script for the stored procedure:

CREATE PROCEDURE Newsletter_Select

AS

SELECT EndUserID,
FirstName,
LastName,
Email
FROM EndUser
INNER JOIN ContactInformation
ON ContactInformation.ContactInformationID = EndUser.ContactInformationID
WHERE IsSubscribed = 1
AND EndUserTypeID = 1

How It Works

The Newsletter_Select stored procedure simply queries from the EndUser table while inner joining the
ContactInformation table for only those users who are declared as customers from the EndUserTypeID
being equal to the number 1 and the IsSubscribed field being equal to 1, meaning that they have agreed
to receive newsletters.

2. After adding and executing the stored procedure script followed by adding the name of the stored proce-
dure to the Name enumeration, you can stay within the data access tier of the code and add the necessary
class. So, add a new class named NewsletterSelectData to the LittleItalyVineyard.DataAccess class
library project within the Select directory and namespace. This new class will contain the following
code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

namespace LittleItalyVineyard.DataAccess.Select
{

public class NewsletterSelectData: DataAccessBase
{

public NewsletterSelectData()
{

StoredProcedureName = StoredProcedure.Name.➥

Newsletter_Select.ToString();
}

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING544

7249ch24.qxd 11/13/06 9:25 PM Page 544

public DataSet Get()
{
DataSet ds;

DataBaseHelper dbhelper = new DataBaseHelper➥

(StoredProcedureName);
ds = dbhelper.Run(ConnectionString);

return ds;
}

}
}

How It Works

The body code added to the data access portion of the application first specifies the name of the
stored procedure being used within the constructor and then has a function named Get that will return
a DataSet by way of using the DataBaseHelper class.

3. The next segment to implement is the business logic code into the architecture. Therefore, proceed to
the LittleItalyVineyard.BusinessLogic class library project, and add a new class named
ProcessNewsletter. Within this class, add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data;

using LittleItalyVineyard.DataAccess.Select;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessNewsletter : IBusinessLogic
{

private DataSet _resultset;

public ProcessNewsletter()
{

}

public void Invoke()
{

NewsletterSelectData newsletterdata =➥

new NewsletterSelectData();
ResultSet = newsletterdata.Get();

}

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 545

7249ch24.qxd 11/13/06 9:25 PM Page 545

public DataSet ResultSet
{

get { return _resultset; }
set { _resultset = value; }

}
}

}

How It Works

In a similar fashion to the other business logic classes, you implement the IBusinessLogic interface and
subsequently implement the Invoke() method that will call upon the NewsletterSelectData class that
you created in the previous exercise step. Finally, a DataSet property named ResultSet will be used for
the returned DataSet from the data access code.

4. You need to add several pieces to the presentation layer of the application. You’ll first focus your attention
on the actual HTML template that will be used within the e-mail newsletter message being sent. To do so,
return to the Admin directory within the web project, and add a new folder named EmailTemplates. After
you add this new folder, add an HTML page to that directory named CustomerNewsletter.htm. Since this
is an HTML page and not a web form, there will be no master page associated, and it will have only HTML
code. Therefore, add the following HTML code:

<html>
<head>
<link href="https://www.littleitalyvineyards.com/Css/style.css"
type="text/css" rel="stylesheet" />
</head>
<body>
<table width="100%" height="100%" border="0"
cellpadding="0" cellspacing="0"
style="background-image:
url(https://www.littleitalyvineyards.com➥

/images/til_1.jpg);">
<tr>
<td> </td>
<td width="490" align="left" valign="top">
<table width="490" border="0" cellspacing="0"
cellpadding="0">
<tr>
<td style="width: 10px"> </td>
<td width="470" align="left" valign="top">
<table width="470" height="100%" border="0"
cellpadding="0" cellspacing="0">
<tr>
<td height="164" align="left" valign="top"
background="https://www.littleitalyvineyards.com➥

/images/top_1.jpg"
style="width: 475px">
<div style="padding-left: 156px; padding-top: 69px; text-align: left;">

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING546

7249ch24.qxd 11/13/06 9:25 PM Page 546

<img src="https://www.littleitalyvineyards.com/images/logo.jpg"
width="159" height="36" border="0">

 </div>
</td>
</tr>
<tr>
<td height="172" align="right" valign="top"
background="https://www.littleitalyvineyards.com~CC
/images/back_1.jpg"
style="width: 475px">
<div style="padding-left: 0px; padding-top: 14px; padding-right: 23px;
padding-bottom: 0px">

</div>
</td>
</tr>
<tr>
<td height="100%" align="left" valign="top"
style="width: 475px">
<table width="100%" height="100%" border="0"
cellpadding="0" cellspacing="0"
background="https://www.littleitalyvineyards.com➥

/images/rep_3.jpg">
<tr align="left" valign="top">
<td background="https://www.littleitalyvineyards.com/images/rep_left.jpg"
style="width: 10px">
<img src="https://www.littleitalyvineyards.com/images/rep_left.jpg"
width="10" height="1"></td>
<td height="100%">
<table width="450" height="100%" border="0" cellpadding="0"
cellspacing="0">
<tr align="left" valign="top">
<td background="https://www.littleitalyvineyards.com/images/rep_line.jpg"
bgcolor="#F3E9BF" style="background-repeat: repeat-y;
background-position: top left; text-align: center;">

<table border="0" cellpadding="0" cellspacing="0" width="95%">
<tr>

<td>
Dear `+Name+,

`+MessageBody+</td>

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 547

7249ch24.qxd 11/13/06 9:25 PM Page 547

</tr>
</table>

`+Clickhere+ to be removed from this newsletter mailing list.</td>
</tr>
</table>
</td>
<td width="10"
background="https://www.littleitalyvineyards.com/images/rep_right.jpg">
<img src="https://www.littleitalyvineyards.com/images/rep_right.jpg"
width="10" height="1"></td>
</tr>
<tr>
<td colspan="3" valign="top" align="center">
<img src="https://www.littleitalyvineyards.com/images/bottom_1.jpg"
width="470" height="23"></td>
</tr>
</table>
</td>
</tr>
</table>
</td>
<td></td>
</tr>
</table>
</td>
<td> </td>
</tr>
<tr>
<td></td>
<td height="100%">
<table cellpadding="0" cellspacing="0" border="0"
width="100%" height="100%">
<tr>
<td style="height: 100%; background-image:
url(https://www.littleitalyvineyards.com➥

/images/rep_bot.jpg);
background-repeat: repeat-y; background-position: center;">
</td>
</tr>
</table>
</td>
</tr>
</table>
</body>
</html>

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING548

7249ch24.qxd 11/13/06 9:25 PM Page 548

How It Works

The HTML code you added is almost the same layout as you have been using for the application thus
far. The most notable differences are the links for the style sheet and the images. Notice that they are
full uniform resource locator (URL) links; because this HTML will be e-mailed to the customer, the
images and styles will need to have a publicly available location for them to display. For added security,
you have used the HTTPS secure connection for the links. Figure 24-1 shows the end result.

Figure 24-1. The HTML newsletter template

Lastly, you will notice there is some text added to the main body of the template, namely, `+Name+,
`+MessageBody+, and `+Clickhere+. These are placeholders where the customer’s name and the body
of the message will be placed.

5. As mentioned, you will need to add several pieces to the Admin directory within the web project
and presentation section. Specifically, you will add three separate web forms: Newsletter.aspx,
SendingNewsletter.aspx, and NewsletterConfirmation.aspx. The Newsletter.aspx and the
NewsletterConfirmation.aspx web forms will be associated to the Admin.master master page. Before
adding these new web forms, you need to add a new tab to the Admin.master page, as shown in the
following HTML:

<div class="shadetabs">

<li runat="server" id="Products">

Products
<li runat="server" id="Orders">

Orders
<li runat="server" id="Newsletter">

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 549

7249ch24.qxd 11/13/06 9:25 PM Page 549

Newsletter

</div>

6. Now add the Newsletter.aspx web form and the NewsletterConfirmation.aspx web form, which will
both be associated to the Admin.master master page. The following is the HTML for these pages:

<%@ Page Language="C#" MasterPageFile="~/Admin/Admin.master"
AutoEventWireup="true" CodeFile="Newsletter.aspx.cs"
Inherits="Admin_Newsletter"
Title="Admin Control Panel | Newsletter" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="contentplaceholderAdmin"
Runat="Server">

<table border="0" cellpadding="0" cellspacing="0"

width="85%">
<tr>

<td>
Compose Newsletter</td>
</tr>
<tr>

<td>
<asp:TextBox ID="textMessageBody" runat="server"

CssClass="textField" Height="208px"
TextMode="MultiLine" Width="100%">

</asp:TextBox></td>
</tr>
<tr>

<td>
</td>

</tr>
<tr>

<td style="text-align: center">
<asp:Button ID="commandSend" runat="server"

CssClass="button" OnClick="commandSend_Click"
Text="Send Newsletter" /></td>

</tr>
</table>

</asp:Content>

In the HTML you just added to the Newsletter.aspx web form, there is a multiline text box and a com-
mand button named commandSend:

<%@ Page Language="C#" MasterPageFile="~/Admin/Admin.master"
AutoEventWireup="true" CodeFile="NewsletterConfirmation.aspx.cs"
Inherits="Admin_NewsletterConfirmation"
Title="Admin Control Panel | Newsletter Confirmation" %>

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING550

7249ch24.qxd 11/13/06 9:25 PM Page 550

<asp:Content ID="Content1"
ContentPlaceHolderID="contentplaceholderAdmin"
Runat="Server">

<table border="0" cellpadding="0" cellspacing="0"

width="75%">
<tr>
<td style="width: 100px; height: 10px; text-align: center">
The newsletters have been sent.</td>
</tr>
</table>

</asp:Content>

Within the HTML you added to the NewsletterConfirmation.aspx web form, you simply have an HTML
table with a message informing the administrator that the newsletters have been sent.

7. Now add the final web form, which will not be associated to the Admin.master master page, and add
the following HTML to the SendingNewsletter.aspx web form:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="SendingNewsletter.aspx.cs"
Inherits="Admin_SendingNewsletter" %>

<html>
<head id="Head1" runat="server">

<title>Processing....</title>
<meta http-equiv="Content-Style-Type" content="text/css" />
<link href="../Css/style.css" type="text/css" rel="stylesheet" />
<script language="javascript">

var LoopCounter = 1;
var MaxLoop = 5;
var IntervalId;

function BeginLoad()
{

location.href = "<%= Request.QueryString["Page"]%>";
IntervalId = window.setInterval("LoopCounter=UpdateProgress➥

(LoopCounter, MaxLoop)", 500);
}

function EndLoad()
{

window.clearInterval(IntervalId);
Progress.innerText = "Page Loaded -- Not Transferring";

}

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 551

7249ch24.qxd 11/13/06 9:25 PM Page 551

function UpdateProgress(LoopCounter, MaxLoops)
{

LoopCounter += 1;

if (LoopCounter <= MaxLoops)
{

Progress.innerText += ".";
return LoopCounter;

}
else
{

Progress.innerText = "";
return 1;

}
}

</script>
</head>
<body onload="BeginLoad()" onunload="EndLoad()"
style="text-align: center"
background="../Images/til_1.jpg">

<form id="form2" runat="server">

<table border="0" cellpadding="0" cellspacing="0" width="90%">
<tr>

<td style="width: 100%; background-color:
#f3e9bf; text-align: center">

</td>
</tr>
<tr>

<td style="width: 100%; background-color:
#f3e9bf; text-align: center">

<img border="0" height="36" src="../images/logo.jpg"
width="159" />

</td>
</tr>
<tr>

<td style="width: 100%; background-color: #f3e9bf;
text-align: center">

Administrative Control Panel</td>
</tr>
<tr>

<td style="width: 100%">

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING552

7249ch24.qxd 11/13/06 9:25 PM Page 552

</td>
</tr>
<tr>

<td style="width: 100%; text-align: center;">
<div style="background-color: #f3e9bf; width: 100%;

text-align: center; height: 205px;">

<table align="center" border="0" cellpadding="0"
cellspacing="0" height="99%" valign="middle"

width="99%">
<tr>

<td align="center" valign="middle">

Sending Newsletter

 -- Please Wait

</td>

</tr>
</table>

</div>
</td>

</tr>
</table>

</form>
</body>
</html>

How It Works

The HTML added to the SendingNewsletter.aspx web form is similar to the page you added when pro-
cessing a customer’s payment and submitting the information to the PayPal application programming
interfaces (APIs) in Chapter 20. Over time when the customer list grows and there are several hundred
or even several thousand customers who are subscribed to the newsletter, processing the sending of
the e-mail newsletters can be a lengthy process. So, if this is the case, you want to have this page dis-
played during the processing and sending of the e-mails.

8. Proceed to the LIttleItalyVineyard.Operational class library and then to the EmailManager class. In this
class, add a new class within the class file that will process the sending of the newsletter e-mail mes-
sages. Add the following code, and then I’ll discuss it in more detail:

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 553

7249ch24.qxd 11/13/06 9:25 PM Page 553

public class NewsletterManager
{

private DataSet _userdata;
private string _messagebody;

public NewsletterManager()
{

}

public void SendNewsletter()
{

string msgbody = string.Empty;
EmailManager mailmanager = new EmailManager();
EmailContents mailcontents = new EmailContents();

using (StreamReader sr = new StreamReader(HttpContext.➥

Current.Server.MapPath("~/Admin/EmailTemplates➥

/CustomerNewsletter.htm")))
{

string stringBody = sr.ReadToEnd();

foreach (DataRow dr in UserData.Tables[0].Rows)
{

msgbody = stringBody;
msgbody = msgbody.Replace("`+Name+" ,➥

dr["FirstName"].ToString() +
" " + dr["LastName"].ToString());

msgbody = msgbody.Replace("`+MessageBody+" , MessageBody);

mailcontents.To = dr["Email"].ToString();
mailcontents.FromName = "Little Italy Vineyards";
mailcontents.FromEmailAddress =➥

"info@littleitalyvineyards.com";
mailcontents.Subject = "Newsletter";
mailcontents.Body = msgbody;

mailmanager.Send(mailcontents);
}

}
}

public string MessageBody
{

get { return _messagebody; }
set { _messagebody = value; }

}

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING554

7249ch24.qxd 11/13/06 9:25 PM Page 554

public DataSet UserData
{

get { return _userdata; }
set { _userdata = value; }

}
}

How It Works

You have added a fair amount of code to the operational portion of the application and code. The name of
the new class is called NewsletterManager, which has a method named SendNewsletter and two sepa-
rate properties, MessageBody and UserData. Within the SendNewsletter method, you will first instantiate
the EmailManager class and EmailContents struct, followed by using a StreamReader to read the HTML
template page, CustomerNewsletter.htm. The entire usage of the StreamReader is enclosed within a using
statement so that when the processing is complete, the resources for the StreamReader will be disposed
of automatically. Within the using statement, the first task looks for the placeholders that you placed
within the HTML template. To refresh your memory, the placeholders that were used are `+Name+ and
`+MessageBody+, which you will utilize within the stringBody string variable that was used to read the
entire contents of the HTML template with the StreamReader’s ReadToEnd function. You will first take
the complete stringBody variable and then use the Replace method to look for the placeholders and
use the name of the customer and the message body of the newsletter, respectively. You will finally
populate the EmailContents struct followed by using the EmailManager class to send the email. All of
this is within a loop of the DataSet that is returned and that contains the information from those who
are subscribed to the newsletter.

9. You have added the underlying functionality to the application, which will query the subscribed cus-
tomers and send the e-mail newsletter messages. You now need to add the functionality to capture the
information entered by the administrator and pass it along to be processed for the sending of the
newsletters. Here’s the Newsletter.aspx code:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Operational;

public partial class Admin_Newsletter : BasePage
{

protected void Page_Load(object sender , EventArgs e)
{

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 555

7249ch24.qxd 11/13/06 9:25 PM Page 555

if (!IsPostBack)
{

textMessageBody.Focus();
}

}

protected void commandSend_Click(object sender , EventArgs e)
{

string URL = "NewsletterConfirmation.aspx";
base.NewsletterBody = Utilities.FormatText➥

(textMessageBody.Text , true);
Response.Redirect("SendingNewsletter.aspx?Page=" + URL);

}
}

How It Works

This code is not overly complex. First notice that this page inherits from the BasePage because you will
need to add a string property to the BasePage class. This string property is named NewsletterBody. Within
the page load event, you first set the focus to the textMessageBody text box. Finally, within the click event
of the commandSend button, you specify that the target location is the NewsletterConfirmation.aspx
web page, and then you set the new BasePage property, NewsletterBody, to that of the text entered
into the textMessageBody text box after it is formatted using the FormatText function of the Utilities
class. Finally, the user is redirected to the SendingNewsletter.aspx web form with the Page query string
you specified earlier.

10. Now you will address the NewsletterConfirmation.aspx web form where the actual code will be placed
to call upon the functionality to process and send the e-mail newsletters:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Operational;
using LittleItalyVineyard.BusinessLogic;

public partial class Admin_NewsletterConfirmation : BasePage
{

protected void Page_Load(object sender , EventArgs e)
{

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING556

7249ch24.qxd 11/13/06 9:25 PM Page 556

if (!IsPostBack)
{

SendNewsletters();
}

}

private void SendNewsletters()
{

ProcessNewsletter processnewsletter = new ProcessNewsletter();
NewsletterManager newslettermngr = new NewsletterManager();

try
{

processnewsletter.Invoke();
newslettermngr.MessageBody = base.NewsletterBody;
newslettermngr.UserData = processnewsletter.ResultSet;
newslettermngr.SendNewsletter();

}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

}
}

How It Works

In this code that you added to the NewsletterConfirmation.aspx web form, you need to have the page
inherit from the BasePage class, and then within the page load event, you will check whether there is
a postback. If not, you will call the SendNewsletters method. Now within the SendNewsletter method,
you will instantiate the ProcessNewsletter and NewsletterManager classes. Then finally, you call the
Invoke() method of the ProcessNewsletter followed by the MessageBody and UserData properties being
populated with the NewsletterBody and the ResultSet properties, respectively. The SendNewsletter
method will then be called to complete the processing of the e-mail newsletters.

You now have complete functionality for sending e-mail newsletter messages to all the customers.

Allowing the Customer to Unsubscribe
Now that you have solid functionality to send e-mail messages to the customers who are sub-
scribed to receive these transmissions, you will add one final piece of functionality. This final
piece is to allow any of the customers to unsubscribe from the newsletter at any time if they
happen to decide they do not want it sent to them anymore. This is an important aspect to
implement within any type of mass e-mailing functionality. You do not want any of your
customers to be annoyed by the newsletter if they decide they do not want it anymore. The
following exercise shows how to allow the customers to unsubscribe from the newsletter.

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 557

7249ch24.qxd 11/13/06 9:25 PM Page 557

Exercise: Unsubscribing from the Newsletter

In this exercise, you will finalize the e-mail newsletter functionality so that a customer can unsubscribe from the
newsletter e-mail without any interaction from an administrator. Follow these steps:

1. As usual, you will begin with the stored procedure that is needed to remove the customer from the
mailing list:

CREATE PROCEDURE NewsletterUnsubscribe_Update

@EndUserID int

AS

UPDATE EndUser SET IsSubscribed = 0
WHERE EndUserID = @EndUserID

How It Works

The NewsletterUnsubscribe_Update stored procedure accepts one parameter, EndUserID, which will
then subsequently update the EndUser table and then set the IsSubscribed field to false or zero in this
case where the EndUserID is specified.

2. After executing the new stored procedure and adding it to the Name enumeration within the data
access tier, add a new class to the Update folder named NewsletterUpdateData with the following
code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data.SqlClient;

using LittleItalyVineyard.Common;

namespace LittleItalyVineyard.DataAccess.Update
{

public class NewsletterUpdateData : DataAccessBase
{

private EndUser _enduser;
private NewsletterUpdateDataParameters➥

_newsletterupdatedataparameters;

public NewsletterUpdateData()
{
StoredProcedureName = StoredProcedure.Name.➥

NewsletterUnsubscribe_Update.ToString();
}

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING558

7249ch24.qxd 11/13/06 9:25 PM Page 558

public void Update()
{

_newsletterupdatedataparameters =➥

new NewsletterUpdateDataParameters(EndUser);
DataBaseHelper dbhelper =➥

new DataBaseHelper(StoredProcedureName);
dbhelper.Parameters =➥

_newsletterupdatedataparameters.Parameters;
dbhelper.Run();

}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}
}

public class NewsletterUpdateDataParameters
{

private EndUser _enduser;
private SqlParameter[] _parameters;

public NewsletterUpdateDataParameters(EndUser enduser)
{
EndUser = enduser;
Build();

}

private void Build()
{

SqlParameter[] parameters =
{

new SqlParameter("@EndUserID" , EndUser.EndUserID)
};

Parameters = parameters;
}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}

public SqlParameter[] Parameters
{

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 559

7249ch24.qxd 11/13/06 9:25 PM Page 559

get { return _parameters; }
set { _parameters = value; }

}
}

}

How It Works

The code added to the data access layer of the architecture and application is similar to the other code
in this section. An update method executes the stored procedure that you created in the first step of
this exercise by using the EndUser common class to pass in the required parameter.

3. The next step is to add a new class to the LittleItalyVineyard.BusinessLogic, named
ProcessNewsletterUnsubscribe, and add the following code:

using System;
using System.Collections.Generic;
using System.Text;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.DataAccess.Update;

namespace LittleItalyVineyard.BusinessLogic
{

public class ProcessNewsletterUnsubscribe : IBusinessLogic
{

private EndUser _enduser;

public ProcessNewsletterUnsubscribe()
{

}

public void Invoke()
{

NewsletterUpdateData newsletterupdatedata =➥

new NewsletterUpdateData();
newsletterupdatedata.EndUser = this.EndUser;
newsletterupdatedata.Update();

}

public EndUser EndUser
{

get { return _enduser; }
set { _enduser = value; }

}
}

}

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING560

7249ch24.qxd 11/13/06 9:25 PM Page 560

How It Works

The code within the business logic layer has the standard and required Invoke() method that will pass
along the EndUser common class property to the NewsletterUpdateData class.

4. In the previous exercise, you added full functionality to read the HTML newsletter template and send
the e-mail messages. However, in the SendNewsletter method of the NewsletterManager class within
the LittleItalyVineyard.Operational class library, you will need to add some code, which is in bold in the
following updated SendNewsletter method:

public void SendNewsletter()
{

string unsubscr = string.Empty;
string msgbody = string.Empty;
EmailManager mailmanager = new EmailManager();
EmailContents mailcontents = new EmailContents();

using (StreamReader sr = new StreamReader(HttpContext.Current.➥

Server.MapPath("~/Admin/EmailTemplates➥

/CustomerNewsletter.htm")))
{

string stringBody = sr.ReadToEnd();

foreach (DataRow dr in UserData.Tables[0].Rows)
{

msgbody = stringBody;

unsubscr = "<a href=\"http://www.littleitalyvineyards.com/➥

Admin/Unsubscribe.aspx?EndUserID=" +
dr["EndUserID"].ToString() + "?FullName=" +
dr["FirstName"].ToString() +
" " + dr["LastName"].ToString() +
"\"Target=\"_blank\"\">Click here";

msgbody = msgbody.Replace("`+Name+" , ➥

dr["FirstName"].ToString() +
" " + dr["LastName"].ToString());

msgbody = msgbody.Replace("`+MessageBody+" , MessageBody);
msgbody = msgbody.Replace("`+Clickhere+" , unsubscr);

mailcontents.To = dr["Email"].ToString();
mailcontents.FromName = "Little Italy Vineyards";
mailcontents.FromEmailAddress =➥

"info@littleitalyvineyards.com";
mailcontents.Subject = "Newsletter";
mailcontents.Body = msgbody;

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 561

7249ch24.qxd 11/13/06 9:25 PM Page 561

mailmanager.Send(mailcontents);
}

}
}

How It Works

The newly appended code within the SendNewsletter method will address the last placeholder;
`+Clickhere+, which will be replaced with a hyperlink that will direct a customer to a site where they
can unsubscribe from the e-mail newsletter.

5. Moving along, you now need to add the web form to the Admin section of the web project that the
customer will be directed to if they so want to be removed from the subscription of the newsletter.
Therefore, add a new web form named Unsubscribe.aspx to the Admin directory with the following
HTML:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="UnSubscribe.aspx.cs"
Inherits="Admin_UnSubscribe"
Title="Admin Control Panel | Unsubscribe" %>

<html>
<head id="Head1" runat="server">
<title></title>
<meta http-equiv="Content-Style-Type" content="text/css" />
<link href="../Css/style.css" type="text/css" rel="stylesheet" />
</head>
<body>
<form id="form1" runat="server">
<table width="100%" height="100%" border="0"
cellpadding="0" cellspacing="0"
style="background-image: url(../images/til_1.jpg);">
<tr>
<td> </td>
<td width="490" align="left" valign="top">
<table width="490" border="0" cellspacing="0"
cellpadding="0">
<tr>
<td width="10"> </td>
<td width="470" align="left" valign="top">
<table width="470" height="100%" border="0"
cellpadding="0" cellspacing="0">
<tr>
<td height="164" align="left" valign="top"
background="../images/top_1.jpg">
<div style="padding-left: 156px; padding-top: 69px">
<img src="../images/logo.jpg" width="159" height="36"
border="0">

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING562

7249ch24.qxd 11/13/06 9:25 PM Page 562

 </div>
</td>
</tr>
<tr>
<td height="172" align="right" valign="top"
background="../images/back_1.jpg">
<div style="padding-left: 0px; padding-top: 14px; padding-right:
23px; padding-bottom: 0px">
 </div>
</td>
</tr>
<tr>
<td height="100%" align="left" valign="top">
<table width="100%" height="100%" border="0" cellpadding="0"
cellspacing="0" background="../images/rep_3.jpg">
<tr align="left" valign="top">
<td background="../images/rep_left.jpg" style="width: 10px">
</td>
<td height="100%">
<table width="450" height="100%" border="0" cellpadding="0"
cellspacing="0">
<tr align="left" valign="top">
<td background="../images/rep_line.jpg" bgcolor="#F3E9BF"
style="background-repeat: repeat-y;
background-position: top left; text-align: center;">

Unsubscribe From Newsletter

<table border="0" cellpadding="0" cellspacing="0"
width="99%" height="99%" align="center" valign="middle">
<tr>
<td align="center" valign="top">

<table border="0" cellpadding="3" cellspacing="0"
style="width: 360px">
<tr>
<td>
Dear
<asp:Label ID="labelName" runat="server">
</asp:Label>, you have been successfully
removed from the newsletter mailing list.</td>
</tr>
</table>
</td>
</tr>
</table>

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 563

7249ch24.qxd 11/13/06 9:25 PM Page 563

</td>
</tr>
</table>
</td>
<td width="10" background="../images/rep_right.jpg">
</td>
</tr>
<tr>
<td colspan="3" valign="top" align="center">
</td>
</tr>
</table>
</td>
</tr>
</table>
</td>
<td></td>
</tr>
</table>
</td>
<td> </td>
</tr>
<tr>
<td></td>
<td height="100%">
<table cellpadding="0" cellspacing="0" border="0"
width="100%" height="100%">
<tr>
<td style="height: 100%;
background-image: url(../images/rep_bot.jpg); background-repeat:
repeat-y; background-position: center;"></td>
</tr>
</table>
</td>
<td></td>
</tr>
</table>
</form>
</body>
</html>

How It Works

The HTML you added contains a Label control named labelName along with a brief message informing
the customer that they have been removed from the newsletter mailing list.

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING564

7249ch24.qxd 11/13/06 9:25 PM Page 564

6. As a result of the Admin directory being password protected with forms authentication, you will need to
specify that Unsubscribe.aspx will be the exception to the forms authentication by appending the fol-
lowing to the Web.config file within the Admin directory:

<?xml version="1.0"?>
<configuration>

<appSettings/>
<connectionStrings/>
<system.web>

<authorization>
<deny users="?" />

</authorization>
</system.web>
<location path="UnSubscribe.aspx">

<system.web>
<authorization>

<allow users="*" />
</authorization>

</system.web>
</location>

</configuration>

How It Works

The Web.config file originally specifies that all pages within the directory are inaccessible without
being authenticated. However, by adding the path of the file Unsubscribe.aspx using the location tag,
you can specify that this page is actually accessible without the user being authenticated. You accom-
plish this by using an asterisk for the users element.

7. Now add the following C# code to the Unsubscribe.aspx web form:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using LittleItalyVineyard.Common;
using LittleItalyVineyard.BusinessLogic;

public partial class Admin_UnSubscribe : System.Web.UI.Page
{

protected void Page_Load(object sender , EventArgs e)
{

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING 565

7249ch24.qxd 11/13/06 9:25 PM Page 565

if (!IsPostBack)
{

UnsubscribeCustomer();
labelName.Text = Request.QueryString["FullName"];

}
}

private void UnsubscribeCustomer()
{

ProcessNewsletterUnsubscribe unsubscribe =➥

new ProcessNewsletterUnsubscribe();
EndUser enduser = new EndUser();
enduser.EndUserID = int.Parse(Request.QueryString["EndUserID"]);

unsubscribe.EndUser = enduser;

try
{

unsubscribe.Invoke();
}
catch
{

Response.Redirect("../ErrorPage.aspx");
}

}
}

How It Works

The final piece of functionality you just added checks for a postback, and within the UnsubscribeCustomer
method, you instantiate the ProcessNewsletterUnsubscribe class from the business logic tier, populate the
EndUserID from the query string, and finally call the Invoke() method. Lastly, by using the FullName query
string, the labelName’s text will be set to the customer’s full name.

This brings you to the completion of another exercise; you now have the functionality that will allow the customers
who are subscribed to the newsletter to unsubscribe, if necessary.

Summary
In this chapter, you explored a few techniques you can use to promote additional products
and attempt to upsell the products from an online store. With the completion of this function-
ality, you can be confident that you have the fully functional e-commerce application that you
initially set out to build. Not only can customers search and browse through the product cata-
log, but you can also attempt to promote related products and try to upsell the orders being
placed by the customers.

CHAPTER 24 ■ PROMOTING THE SITE AND UPSELLING566

7249ch24.qxd 11/13/06 9:25 PM Page 566

Accessing the Money from the
Credit Card Transaction

At this point in the book, you have not only implemented the functionality to allow the
administrator to fulfill orders and fully process them but also to promote additional sales.
Now that you have completed the sales portion of the application, I’ll discuss another impor-
tant aspect of the overall process of selling online: accessing the money from the credit card
transaction. Obviously, when the products are sold and shipped to the customer, the business
wants access to that money as quickly as possible.

Once a customer pays for their products with their credit card, the funds are not readily
available for use for the company. The funds are still within the credit card–processing com-
pany, which in this case is PayPal. In this chapter, I will discuss the methods that are available
for obtaining the funds from the PayPal account, specifically by placing them into a checking
account for the business, which can then use the funds.

■Note All your previous work regarding PayPal involved the PayPal test account, or the sandbox account.
The sandbox account does not have the ability to transfer any funds because the funds are fictitious. Because
of this, in this chapter, the figures and discussion will be directly related to the live PayPal account.

Transferring Funds
The most common way to access the funds from PayPal is to have PayPal transfer the money
to the bank account registered within your PayPal profile. Using a direct transfer of funds is
also the fastest and cheapest method. There is no cost involved, and the funds are available in
your bank account within three to four days.

The following exercise will demonstrate how to transfer the funds in PayPal to your bank
account.

567

C H A P T E R 2 5

■ ■ ■

7249ch25.qxd 11/13/06 9:25 PM Page 567

Exercise: Transferring Your Money

This exercise shows how to transfer the funds that are available in your PayPal account to your business bank
account. Follow these steps:

1. Log in to your PayPal account located at https://www.paypal.com. Enter your username and pass-
word, and within a few seconds, you will arrive at the home page, as shown in Figure 25-1.

Figure 25-1. The PayPal account home page

2. Prior to transferring any funds, you need to be sure you have a registered bank account on file with
PayPal. To do so, click the Profile tab and then the link Bank Accounts in the Financial Information sec-
tion. This will navigate you to the page that lists the currently registered bank accounts, as shown in
Figure 25-2.

CHAPTER 25 ■ ACCESSING THE MONEY FROM THE CREDIT CARD TRANSACTION568

7249ch25.qxd 11/13/06 9:25 PM Page 568

Figure 25-2. The bank accounts

3. On this web page, you can select the primary bank account you want to use. Or, if you do not have any
current accounts registered, click the Add button to complete the registration process for a new bank
account. Next, click the Withdraw tab, and you will be taken to the page shown in Figure 25-3 that
presents the different options for withdrawing the funds from PayPal.

Figure 25-3. Withdraw options

CHAPTER 25 ■ ACCESSING THE MONEY FROM THE CREDIT CARD TRANSACTION 569

7249ch25.qxd 11/13/06 9:25 PM Page 569

4. From the different options available, click the first option, Transfer Funds to Your Bank Account. You’ll
then see the screen shown in Figure 25-4.

Figure 25-4. Electronic transfer

5. To complete the transfer, enter the amount you want to transfer from the available balance within the
PayPal account, and click the Continue button. After confirming the transfer, the funds will be readily
available in your bank account within three to four days.

This exercise showed you how to receive the funds that you have collected from the sales and showed how to
transfer the funds to your checking account.

Accessing the Money in Other Ways
Although transferring the funds is the most common method used, it is important to realize
that PayPal offers additional methods to access your funds. In the following sections, I will dis-
cuss some of the highlights of the additional options that are available.

Requesting a Check
Another option for accessing the funds from your PayPal account is to request a physical
check. This costs an additional $1.50 (at the time of this writing), and it takes longer for the
check to be processed and mailed to the address you specify.

Money Market
PayPal offers a money market where you can keep your funds and earn a return. This isn’t
really a way to gain access to your funds like the other methods discussed, but nonetheless it
is an option available to you.

CHAPTER 25 ■ ACCESSING THE MONEY FROM THE CREDIT CARD TRANSACTION570

7249ch25.qxd 11/13/06 9:25 PM Page 570

Debit Card
A debit card is available where you can access the funds directly from PayPal. Once you have
requested and obtained your debit card, you can utilize the funds in your PayPal account by
using the card to make purchases wherever MasterCard is accepted. This could make a perfect
backup method for your transfers.

Cash with ATM
Along with making purchases with the debit card, the ability to withdraw your funds from the
PayPal account in the form of cash from an ATM machine is also available. Some associated
fees are involved.

Purchase from PayPal Shops
The final option is to shop directly with the PayPal funds at one of the PayPal shops indicated
online within the PayPal account. Although this is not a method of withdrawing the funds, it
could come in handy if you need to make a purchase with your funds.

Summary
In this chapter, I discussed an important aspect of selling products online. As mentioned,
once a customer makes a purchase and pays for the merchandise, ideally you want to gain
access to the funds as soon as possible. I demonstrated the various methods to gain access to
your funds when using PayPal to process your credit cards. If you are not using PayPal to
process your credit card payments, check with your processing company to learn how to with-
draw your money. Lastly, it’s a good idea to keep some of the funds in either the PayPal
account (or the account that you use for credit card transactions) so that when you need to
issue a refund, you’ll have sufficient funds.

CHAPTER 25 ■ ACCESSING THE MONEY FROM THE CREDIT CARD TRANSACTION 571

7249ch25.qxd 11/13/06 9:25 PM Page 571

7249ch25.qxd 11/13/06 9:25 PM Page 572

Deployment

It has been quite an experience developing the application thus far. You have completed

the code and development that is required for the official release of the application. As

a result, you need to prepare the code for eventual deployment to the production environ-

ment. This part will outline the options that are available for compiling, building, and

copying the code to the production servers.

P A R T 7

■ ■ ■

7249ch26.qxd 11/13/06 9:26 PM Page 573

7249ch26.qxd 11/13/06 9:26 PM Page 574

Exploring Your Compilation and
Deployment Options

You are almost ready to deploy the finalized application and source code to the production
environment and servers. Before placing the compiled code in the production environment,
though, you need to do some necessary preparation work.

In this chapter, I will discuss the options for making as smooth a transition as possible
when deploying the application to production and officially “going live.” Specifically, I will
cover the following topics:

• Building the code

• Precompiling and publishing the application

• Finalizing the application

Building the Code
Throughout the course of developing the application for the case study, you have compiled
and built the complete source code several times. Now that you have completed the develop-
ment, you will build the source code for a final time. When doing so, pay special attention to
any errors that you might discover, and examine any of the warnings that are present.

Any warnings that have accumulated during the development will not prevent you from
compiling and running the source code, but nevertheless you should address these warnings
prior to officially launching the application. Warnings could appear for many reasons. It could
be that variables being used are not initialized to a value when defined; or perhaps you added
some code that originated from a previous version of the framework, and the functionality is
being phased out.

575

C H A P T E R 2 6

■ ■ ■

7249ch26.qxd 11/13/06 9:26 PM Page 575

Regardless, it is always considered a best practice to address these warning even though
they will not prohibit you from running the application; it’s more of an overall maintenance or
housekeeping task.

Precompiling and Publishing
The latest release of Visual Studio 2005 allows you to prepare your source code prior to deploy-
ing to production. Take a step back, and recall how ASP.NET applications were deployed in
previous versions: essentially the source code was built, and upon success, the web forms and
only the DLLs were copied to the production server. Once the code was copied to the produc-
tion server, the first request of the application would encounter a brief delay. This was not
something that hampered your efforts in a major capacity, but with the latest release of Visual
Studio 2005 and the .NET Framework 2.0, you have some additional options.

The most prominent option with regards to compiling and deploying the application is
the ability to precompile the web application. Choosing this option will shorten the processing
time that is experienced when your application is requested for the first time on the production
server. Instead of your customers experiencing this first hit on the application, the precompi-
lation will act as the first hit on the application by forcing all the pages and code to compile
into assemblies.

The following exercise will demonstrate how you precompile your application.

Exercise: Precompiling the Source Code

This exercise is fairly brief in nature, but it outlines the necessary steps to precompile your source code. Follow
these steps:

1. Create a new folder on your local machine where you will save the precompiled code. I like to create
a new folder named precomp on my desktop. However, you can create a new folder wherever you
want and give it the name of your choosing.

2. Right-click the web project, and select Publish Web Site, as shown in Figure 26-1.

CHAPTER 26 ■ EXPLORING YOUR COMPILATION AND DEPLOYMENT OPTIONS576

7249ch26.qxd 11/13/06 9:26 PM Page 576

Figure 26-1. The Publish Web Site menu item

3. You will now see the Publish Web Site dialog box, as shown in Figure 26-2.

CHAPTER 26 ■ EXPLORING YOUR COMPILATION AND DEPLOYMENT OPTIONS 577

7249ch26.qxd 11/13/06 9:26 PM Page 577

Figure 26-2. The Publish Web Site dialog box

Notice that there are three options when publishing. The first option, Allow This Precompiled Site to Be
Updatable, will be checked. With this option, all the code of the application will be compiled into
assemblies, and any web forms (.aspx files) will be copied as is to the folder that was specified for the
publishing results. The second option, Use Fixed Naming and Single Page Assemblies, results in the
compilation creating user-friendly names of the assemblies as opposed to the hashed values being
used for the naming. Lastly, the third option, Enable Strong Naming on Precompiled Assemblies, tells
the publishing process to use strong-named assemblies with a key file or a key container, which will
result in additional security.

4. The next task is to navigate to the newly created folder you created in step 1 and set the target loca-
tion for the publishing. Then click the OK button. In a few seconds, the publishing will complete, which
is indicated in the lower-left section of the Visual Studio 2005 integrated development environment
(IDE). Proceed to the folder where Visual Studio placed the published files, as shown in Figure 26-3.

CHAPTER 26 ■ EXPLORING YOUR COMPILATION AND DEPLOYMENT OPTIONS578

7249ch26.qxd 11/13/06 9:26 PM Page 578

Figure 26-3. The published files

These are the published files that are ready to be copied to the production servers. For now, though, you will hold
off on copying any of the files; instead, you will wait until the next chapter when the configurations are complete
and then copy them to production.

Finalizing the Application
To finalize preparing the compiled source code for the production environment, you still have
one aspect to address—taking the precompiled code that is generated and disabling the
debugging feature. Turning off debugging is not an absolute requirement for deploying the code
to production; however, it is not necessary for the compiled code to generate any debugging
overhead when running on the production server. Eliminating this overhead will enhance the
performance of the overall application. At first, when only a few users are utilizing the applica-
tion, it may not be readily apparent that this increases performance, but as the application
expands in popularity and you see increased traffic, the benefit of eliminating the debugging
overhead will then become obvious. The following exercise shows you how to finalize the
application.

CHAPTER 26 ■ EXPLORING YOUR COMPILATION AND DEPLOYMENT OPTIONS 579

7249ch26.qxd 11/13/06 9:26 PM Page 579

Exercise: Finalizing the Application

This exercise shows how to turn off the debugging overhead and specify the production uniform resource
locator (URL) for PayPal. Follow these steps:

1. To disable the debugging functionality, proceed to the directory where the source code was precom-
piled and then to the Web.config file. Open the Web.config file in Notepad; you will see the following
contents:

<?xml version="1.0"?>
<!--

Note: As an alternative to hand editing this file you can use the
web admin tool to configure settings for your application. Use
the Website->Asp.Net Configuration option in Visual Studio.
A full list of settings and comments can be found in
machine.config.comments usually located in
\Windows\Microsoft.Net\Framework\v2.x\Config

-->
<configuration>
<appSettings>
<!-- Sandbox PayPal -->
<add key="PayPalAPIUsername" value="psarknas_api1.yahoo.com"/>
<add key="PayPalAPIPassword" value="R97V3NVZUPH92PK8"/>
<add key="PayPalAPIURL" value="https://api-aa.sandbox.paypal.com/2.0/"/>

<add key="CertificatePath" value="~/Certs/LittleItalyVineyards.p12"/>
<add key="CertificatePassword" value="ps5150"/>

<add key="TaxRate" value="7"/>
<add key="SMTPServerName" value="localhost"/>
<add key="ToAddress" value="info@littleitalyvineyards.com"/>
</appSettings>
<connectionStrings>
<add name="SQLCONN"
connectionString="server=Lumberg\SQL2005;uid=sa;
pwd=*****;database=LittleItalyVineyard"/>
</connectionStrings>
<system.web>
<!--

Set compilation debug="true" to insert debugging
symbols into the compiled page. Because this
affects performance, set this value to true only
during development.

-->
<compilation debug="true">
<assemblies>
<add assembly="System.Security, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A"/>

CHAPTER 26 ■ EXPLORING YOUR COMPILATION AND DEPLOYMENT OPTIONS580

7249ch26.qxd 11/13/06 9:26 PM Page 580

</assemblies></compilation>
<!--

The <authentication> section enables configuration
of the security authentication mode used by
ASP.NET to identify an incoming user.

-->
<authentication mode="Forms">

<forms name="LITTLEITALYUTH" loginUrl="~/Admin/Login.aspx"
protection="All"
timeout="120" path="/">

</forms>
</authentication>
<authorization>

<allow users="*"/>
</authorization>

<!--
The <customErrors> section enables configuration
of what to do if/when an unhandled error occurs
during the execution of a request. Specifically,
it enables developers to configure html error pages
to be displayed in place of a error stack trace.

<customErrors mode="On" defaultRedirect="ErrorPage.aspx">
</customErrors>

-->
</system.web>
</configuration>

2. Let’s focus on the compilation tag that currently has the debugging value set to true:

<compilation debug="true">

Change the debug attribute to false:

<compilation debug="false">

3. Now change the PayPal sandbox URL to the live PayPal URL for utilizing the PayPal APIs:

<add key="PayPalAPIURL"
value="https://api-aa.paypal.com/2.0/
"/>

Also, do not forget to register for your live account with PayPal and obtain and use a live certificate. You
will also need to change the username and password values in the Web.config file too.

4. Finally, save the changes.

In this exercise, you disabled the debugging feature and changed the PayPal URL and are now ready to deploy the
finalized code to the production servers, which you’ll do in the next chapter.

CHAPTER 26 ■ EXPLORING YOUR COMPILATION AND DEPLOYMENT OPTIONS 581

7249ch26.qxd 11/13/06 9:26 PM Page 581

Summary
This chapter demonstrated how to prepare and precompile the source code with the intent of
copying the finalized code to the production environment and servers. In next chapter, you
will officially launch the application by configuring the hosting environment along with any
other configurations that may be necessary.

CHAPTER 26 ■ EXPLORING YOUR COMPILATION AND DEPLOYMENT OPTIONS582

7249ch26.qxd 11/13/06 9:26 PM Page 582

Configuring the Production
Environment

In this chapter, you’ll address where your application will live in the vast world of the Inter-
net. I will cover the hosting plan along with its necessary configurations and setup. You can
choose from many options of hosting plans. Therefore, the goal of this chapter is to explain
the options available and provide guidance for configuring the production environment.

More specifically, this chapter will cover the following topics:

• Registering and configuring the domain

• Developing a website hosting plan

• Setting up and configuring IIS and the database

• Installing the SSL certificate

• Deploying the application

Setting Up the Domain
Now that the application is ready for production, you will register a domain name for your
application. This process is not overly complicated, especially as a result of the many com-
panies that offer domain registration services. Domains are registered (rented, really) for a
period of time, which is usually a minimum of one year, and for a specific fee, which will
depend upon the registrar of the domain.

Registering Your Domain
As mentioned, several companies offer domain registration services. The following are a few:

• Yahoo

• GoDaddy

• Web.com

• Register.com

• Network Solutions
583

C H A P T E R 2 7

■ ■ ■

7249ch27.qxd 11/13/06 9:27 PM Page 583

You should browse each of these companies’ websites and investigate their services and
prices so you can pick the best registrar for your situation.

The first step of registering a domain is to determine whether your desired domain is
available. All companies that offer registration services will give you the ability to query the
database of registered domains maintained by ICANN (http://www.icann.org). You simply
enter the domain you want to register, and the query will be made to the registration database.
The result of the query will inform you whether the domain is available. If the domain is not
available, usually the registrar will suggest similar names or will suggest the same name with
alternate suffixes such as .net, .tv, or perhaps .biz.

Going into greater detail about domain names and the registration process is outside the
main scope of this book. However, it is important to understand the basics so you can deliver
an application on the Internet for your client and in this instance for the case study. For the
case study application, I have registered the domain littleitalyvineyards.com. The next step
is to update the information regarding the name servers.

Setting Up the DNS Servers
Once you have successfully registered a domain, you need to tell the domain where to find the
hosting plan. More specifically, you’ll set the DNS servers of the hosting server. Regardless of
where you register your domain, in most cases the registration company will supply you with
a password-protected account where you can make changes to not only the billing, contact,
and technical information but also to the DNS server entries.

At this point, you may not have a hosting plan established. If you do have a hosting plan
and environment set up, you can go ahead and make the necessary DNS entries. If you do not,
you can move to the next section of the chapter to learn about your hosting options.

Setting Up the Hosting Plan
A major aspect of having an e-commerce application, or any type of website, is to determine
where it will be hosted. Hosting is basically where your web application will live, thus allowing
the public to access it. Like with domain registrars, a great deal of competition exists, so you’re
sure to find affordable hosting services. In fact, many of the companies that offer domain reg-
istration services also offer hosting.

When shopping for hosting plans, you need to consider a number of aspects prior to
making your decision. The case study requires a hosting plan that has the .NET Framework 2.0
installed along with access to a SQL Server 2005 database. Many of the hosting plans will offer
this along with other features and component installations. The following are a few hosting
companies that are of reputable status:

• MaximASP

• ORCS Web, Inc.

• DiscountASP.net

• 1 and 1 Internet Limited

• ASPWebhosting.com, LLC

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT584

7249ch27.qxd 11/13/06 9:27 PM Page 584

These hosting companies are a few of many companies that offer ASP.NET 2.0 hosting.
They also offer different types of hosting. More specifically, they offer shared or dedicated
hosting. The difference is that with shared hosting, other web applications will be using the
same web server and database server. The company will have security measures in place to
keep your information isolated. This kind of hosting generally costs less and could be a good
choice for launching a web application where you do not expect a great deal of traffic initially.
You can later scale to meet increased traffic as the application grows. One downside of shared
hosting is that you will usually not have full access to the web and database servers.

The other option is dedicated hosting, which means only you and your application will be
using the hardware, and you will have full control of the operating system. This is generally
more expensive but is best if your application is going to have a great deal of traffic from its
inception.

Regardless of what type of hosting plan you choose or what company, make sure the com-
pany offers adequate customer and technical support, a backup system, redundant power
supplies, and network connections. In fact, most companies advertise 99.9 percent uptime.
Do not accept anything less for your needs.

Now that I have discussed many of the available options, I will share my preference.
I prefer having a dedicated server as a hosting plan because of the control I get over the
entire hardware. This option, however, costs more and really is effective only if you have
many web applications that you need to host.

Many times when developing an application, a standard shared hosting plan will be more
than sufficient to start. When this is the case, you will be provided with an FTP site to deploy
your application where most of the configurations will be managed for you. At the same time,
some applications will need dedicated hardware, as with the case study; therefore, you’ll need
to organize the configurations and setup.

Setting Up IIS and the Database
To configure and set up the hosting environment for Little Italy Vineyards, you need to address
the database and web server. The web server that you’ll use for the case study is Internet Infor-
mation Services (IIS) 6.0, which is included in Windows Server 2003. You will need to make
several configurations prior to uploading any of the compiled source code to the production
server, as described in the following exercise.

Exercise: Configuring IIS

This exercise shows how to set up and configure IIS on the production server, Windows Server 2003. Follow these
steps:

1. Since the selected hosting plan is a dedicated server that you have full control over, you have the abil-
ity to log in remotely to the server. You will use Terminal Server to log in to Windows Server 2003 and
then proceed to the main directory of the web root for IIS. Depending on how the Windows installation
was set up, this directory’s location will vary. When this directory is located, create a directory named
LittleItalyVinyards, as shown in Figure 27-1.

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT 585

7249ch27.qxd 11/13/06 9:27 PM Page 585

Figure 27-1. The LittleItalyVineyards directory

2. Launch IIS Manager. When it’s displayed, expand the Web Sites folder, right-click the Web Sites direc-
tory, and select New ➤ Web Site, as shown in Figure 27-2.

Figure 27-2. Creating a new website with IIS

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT586

7249ch27.qxd 11/13/06 9:27 PM Page 586

3. Upon making the selection to create a new website, you will see the Welcome to the Web Site Creation
Wizard. Click the Next button, and then enter the name of the website so IIS can identify it. You can
simply enter LittleItalyVineyards for the case study, as shown in Figure 27-3.

Figure 27-3. Naming the new website

4. Click the Next button, and you will be navigated to the next step of the wizard where you need to enter
the IP and port settings. As shown in Figure 27-4, choose the All Unassigned option for the IP address;
then enter 80 for the port, which is the default; and enter www.littleitalyvineyards.com for the host
header.

Figure 27-4. Entering the IP address and port settings

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT 587

7249ch27.qxd 11/13/06 9:27 PM Page 587

5. Click the Next button, and you will be navigated to the next wizard step where you should set the path
to the main directory that you created in step 1, as shown in Figure 27-5.

Figure 27-5. Entering the website home directory

6. Click the Next button, and then set the permissions for the website home directory. You can leave the
selected default, which is Read, as shown in Figure 27-6. You should also choose the Run Scripts
(Such As ASP) option.

Figure 27-6. Entering the website access permissions

7. Click Next, and you will be presented with a notification that the wizard is complete. Click the Finish
button, and you will see the new site created in the tree list on the left. Right-click the newly created
website, and choose Properties, as shown in Figure 27-7.

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT588

7249ch27.qxd 11/13/06 9:27 PM Page 588

Figure 27-7. Selecting Properties

8. The Properties dialog box will be displayed for the website. Click the Advanced button, which will
then display another dialog box, Advanced Web Site Identification. In this new dialog box, click the
Add button. Then enter 80 for the TCP port, and enter the domain name, without the www prefix, as
littleitalyvineyards.com, as shown in Figure 27-8.

Figure 27-8. The advanced website identification

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT 589

7249ch27.qxd 11/13/06 9:27 PM Page 589

In this final step of the exercise, you enabled the web server to display the website if the user enters
www.littleitalyvineyards.com or if they enter only littleitalyvineyards.com in their browser. At this
point, you have the IIS web server configured to serve your website when the compiled source code is deployed.

Configuring the SQL Server 2005 Database
The next step is to configure your database. There will be different scenarios based upon what
type of hosting plan you chose. If you have a dedicated server and hosting plan with full
access to the hardware, your options are open as to how to configure the SQL Server database.

Regarding the case study, imagine that you have direct access to the hardware, so there-
fore you can run the complete SQL script to create the database. If the hosting plan that you
have is a shared plan and you do not have full access to the hardware, many of the hosting
companies will provide you with some type of control panel where you can either upload the
SQL script or execute it. If you are still unsure as to how to accomplish this, contact the techni-
cal support group of the hosting plan you have decided upon, and they will be able to further
assist you.

Configuring the SSL Certificate
In the following sections, I’ll discuss how and where to obtain a certificate and how to install
and configure it in your hosting environment. To refresh your memory as to why you need
a certificate, you are not using a third-party shopping cart or credit card–processing server.
You have implemented a custom shopping cart, and you will be submitting the customer’s
credit card information through the PayPal credit card–processing application programming
interfaces (APIs). As a result of this action, you will be transmitting sensitive information from
the client to server, so you need to do so over a secure channel. Now that you know why you
need a certificate, I’ll discuss where and how to obtain one and how to install it.

Obtaining the SSL Certificate
As mentioned, when registering a domain and finding a suitable hosting plan, you’ll find
a great deal of competition in the marketplace. Likewise, many companies provide certifi-
cates, and thus the cost is quite affordable. The following are just a few companies that offer
certificates:

• GoDaddy

• Network Solutions

• VeriSign

• Thawte

• DigiCert

Examine each of these companies’ websites and their associated prices for certificates,
and then make a decision about purchasing from the company of your choosing. All the

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT590

7249ch27.qxd 11/13/06 9:27 PM Page 590

companies will have a slightly different registration and purchase process; however, regardless
of what company you choose, you need to perform similar steps prior to receiving your actual
certificate. Specifically, you need to generate a certificate-signing request (CSR) and then send
it to the certificate provider to generate the actual certificate. The following exercise shows
how to generate the CSR.

Exercise: Generating the CSR

This exercise shows how to generate the CSR that will be needed by the company providing the SSL certificate.
Follow these steps:

1. Return to IIS Manager in the production server, and find the new website you created in the previous
exercise. Right-click the website, choose Properties, and then choose the Directory Security tab, as
shown in Figure 27-9.

Figure 27-9. The Directory Security tab

2. In the Secure Communications section, click the Server Certificate button. You will be presented with
a wizard. Choose the first option, Create a New Certificate, as shown in Figure 27-10.

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT 591

7249ch27.qxd 11/13/06 9:27 PM Page 591

Figure 27-10. Creating a new certificate

3. Click Next, and then choose the option Prepare the Request Now, but Send It Later. Click the Next but-
ton again, and then enter a friendly name, as shown in Figure 27-11.

Figure 27-11. Entering a friendly name

4. Click Next twice. Then, enter the common name that will need to be a fully qualified domain name,
www.LittleItalyVineyards.com, as shown in Figure 27-12.

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT592

7249ch27.qxd 11/13/06 9:27 PM Page 592

Figure 27-12. Entering the common name

5. Click the Next button, enter the geographic information about your company or website, and click
Next again. The next step of the wizard is to select the path and filename for the CSR output request.
Choose a path that is easy to navigate to, as shown in Figure 27-13, and then click the Next button
once again.

Figure 27-13. Entering the path

6. Next, you will see the information you have entered for confirmation. If you find everything satisfactory,
finalize the wizard by clicking the Finish button. Then proceed to the where you saved the CSR output
file. Open this file in Notepad, and it should look similar to the following:

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT 593

7249ch27.qxd 11/13/06 9:27 PM Page 593

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIDaDCCAtECAQAwgYwxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJQQTETMBEGA1UE
BxMKUGl0dHNidXJnaDEfMB0GA1UEChMWTGl0dGxlIEl0YWx5IFZpbmV5YXJkczET
MBEGA1UsvdANBgsvdbkiG9w0BAQEFAAOBjQAwgYkCgYEAv08pQWTJHmxF
5dhs0i8TD1MAQjlDbjiWjVuyUs1vxlS0OOhH3+Y3bB4FaSSTvbQ7uegJ2pCbheCZ
94gp/p10sH2hvCYaCpt3Cnt2DueTAnr7VrYZSiEn+tnpcNgPFz+JRwmnyRXzlWJ8
9XX1xdNAGm3sbsFksEUTN5F/SD4LBcCAwEAAaCCAZkwGgYKKwYBBAGCNw0CAzEM
Fgo1LjIuMzc5MC4yMHsGCisGAQQBgjcCAsdvxbf1UdDwEB/wQEAwIE8DBE
BgkqhkiG9w0BCQ8ENzA1MA4GCCqGSIb3DQMCAgIAgDAOBggqhkiG9w0DBAICAIAw
BwYFKw4DAgcwCgYIKoZIhvcNAwcwEwYDVR0lBAwdbYAdAAgAFIAUwBBACAA
UwBDAGgAYQBuAG4AZQBsACAAQwByAHkAcAB0AG8AZwByAGEAcABoAGkAYwAgAFAA
cgBvAHYAaQBkAGUAcgOBiQAA
AA
AA
AAAAAAAAAAAs8whGItBrbjoIdJuZtxP3/DodS7yaTvjbUNIaPZoDv4vs
ROtgoYYbi6bTQKtM2hZ8b9uYCtljVnmxJHkhGHj9g9AvQO6iS8yJzVclrxg7R6FL
NAGm3sbsFksEUTN5F/SD4LBcCAwEAAaCCAZkwGgYKKwsidobhswoiaoewianacac
cFG6GLQvNX8k2j9S
-----END NEW CERTIFICATE REQUEST-----

Copy this file or the contents of this file. You will need to submit this information to the company or provider from
which you purchased the SSL certificate. Typically, when making a purchase for an SSL certificate, you will be able
to enter the CSR information displayed here, and then you will be able to generate the finalized SSL certificate,
which you will receive via e-mail or via download from the provider.

Installing the SSL Certificate
The next step is to install the finalized SSL certificate that is generated from the provider to
which you submitted the CSR information. As mentioned, the SSL certificate will probably be
e-mailed to you or will be provided via a link on the provider’s website. In either case, when
you have the finalized SSL certificate, return to the production server. The next exercise
demonstrates how to install the certificate.

Exercise: Installing the SSL Certificate

This exercise shows how to install the purchased SSL certificate on the production server. Follow these steps:

1. Locate the finalized SSL certificate that you received (either via e-mail or via download) from the
provider. Once you have located this, copy this file to the production server, and then launch IIS Man-
ager. Select the website you created earlier, and right-click it. Choose the Properties menu item and
then the Directory Security tab. Click the Server Certificate button, and proceed to the wizard. Choose
the Process the Pending Request and Install the Certificate option, as shown in Figure 27-14.

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT594

7249ch27.qxd 11/13/06 9:27 PM Page 594

Figure 27-14. Processing the pending request

2. Click the Next button, and browse to the location in which you uploaded or saved the SSL certificate.
This will have a file extension of *.crt, so you might need to change the File of Type drop-down list in
the Open dialog box to view the certificate file, as shown in Figure 27-15.

Figure 27-15. Locating the certificate file

3. The next step of the wizard will ask which port should be used for SSL transmissions. The default value
of 443, as shown in Figure 27-16, will be adequate for your needs.

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT 595

7249ch27.qxd 11/13/06 9:27 PM Page 595

■Note As a result of the hosting environment in this exercise being a name-based hosting environment (or
more specifically, allowing you to have multiple websites hosted with one IP address), you can have only one
SSL certificate installed and configured.

Figure 27-16. The SSL port

4. Moving along, you will be prompted to confirm the configuration information, as shown in Figure 27-17.
If the information is to your liking, finalize the wizard by clicking the Next button.

Figure 27-17. Confirming the configuration information

You have completed the hosting configuration and the SSL certificate installation, so you can now process secure
orders.

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT596

7249ch27.qxd 11/13/06 9:27 PM Page 596

Deploying the Application
All that remains is to deploy, or copy, the compiled source code to the production environ-
ment. To accomplish this final task, you need to remember back to Chapter 26 where you
compiled the source code to prepare it for production. If you have made any changes since
then, recompile the code.

Copying the Source Code
For the most part, regardless of what hosting plan you have decided upon, you will be able to
upload the compiled source code to the production servers via FTP. In some cases, you might
have access to a VPN connection where you can connect to the production environment as
opposed to an FTP connection. Regardless, connect to the directory that you have configured
in this chapter (or what is supplied to you from your hosting plan), and copy the compiled
source code to the production server. After copying the source code, you are now ready to per-
form some additional testing on the production platform and then, with the blessing of your
client, take the entire application live to your customers.

Finalizing the Web.config File
Now that you have decided on a hosting plan and are ready to utilize the system in the pro-
duction environment, you need to address one last issue. Specifically, you need to alter some
values in the Web.config file. The section of the Web.config file that you need to change is the
connection string to the database from what was being used in the development environment
to what will be used in the production environment:

<connectionStrings>
<add name="SQLCONN"

connectionString="server=production_server_example;uid=sa;
pwd=production_password;database=LittleItalyVineyard"/>

</connectionStrings>

In the connectionStrings tag, the name will remain the same as a result of it being referred
to in the source code. However, the connectionStrings element will change since you need to
specify a different server name on which the database will reside as well as specify the creden-
tials for this database server. Again, depending on your selected hosting plan, you might need
to refer to the documentation or the administrator for this information.

Finally, if you have not done so, you need to change the PayPal API username and pass-
word to use the APIs in the live PayPal system.

Summary
Well, it has been a long trip, but you have now completed the next-to-last chapter in the book.
After finishing this chapter, you can officially launch your e-commerce application to your
customers. The next chapter will discuss some best practices and issues to be aware of as you
launch the application, and it will cover what tools you can use to monitor and provide main-
tenance. See you in the next chapter to wrap up your project!

CHAPTER 27 ■ CONFIGURING THE PRODUCTION ENVIRONMENT 597

7249ch27.qxd 11/13/06 9:27 PM Page 597

7249ch27.qxd 11/13/06 9:27 PM Page 598

Aftercare

The application that you have worked so diligently on is now complete and deployed to the

production environment. After some additional testing and feedback from the client, you

can officially announce and launch the application to the public and to your customers.

After that occurs, most of the hard work is complete—but not all of it. You still need to

closely monitor the application and provide maintenance for it. This final part of the book

will outline some of the best practices for providing aftercare for your application.

P A R T 8

■ ■ ■

7249ch28.qxd 11/13/06 9:28 PM Page 599

7249ch28.qxd 11/13/06 9:28 PM Page 600

Supporting and Maintaining
the Application

Can you believe it? You have finally arrived at the last chapter of your long journey. You have
engaged in quite a bit of planning, developing, coding, and configuring, all performed with
one goal in mind: delivering the best possible e-commerce application to your client and ulti-
mately to your client’s customers.

This final chapter will discuss the following:

• Monitoring the traffic

• Correcting errors

• Optimizing the application

Monitoring the Application
One of the most important tasks after you officially launch your e-commerce application is to
monitor it closely. This includes monitoring the overall traffic that the site generates as well as
monitoring any errors or exceptions that might arise during the initial duration of the applica-
tion’s life.

Many commercial tools are available that you can use to generate reports of the traffic
that your site generates. Many of these tools utilize the log files that are generated from the
IIS web server because a wealth of information is available there. You can also implement your
own traffic-monitoring device or functionality, but this can end up being quite tedious, espe-
cially after you have invested so much time in building the application.

Therefore, I recommend you purchase a third-party tool that will monitor the traffic for
you; you will be amazed at the reports you can generate from these tools. Some examples of
third-party tools and companies are as follows:

• WebLog Expert

• Alter Wind

• Open Tracker

601

C H A P T E R 2 8

■ ■ ■

7249ch28.qxd 11/13/06 9:28 PM Page 601

Depending on your budget and individual needs, simply search for these tools, and follow
their instructions for implementing them to gain access to valuable information about your
web application’s traffic. Some of the tools will be provided as a service with a monthly cost,
and others may allow you to purchase the software for a one-time fee.

My favorite is WebLog Expert, which you can find at http://www.weblogexpert.com. The
software comes in two versions, the lite version and the expert version. The lite version is actu-
ally free but, as you might expect, does not have the same functionality as the expert version.
The expert version has the ability to send the compiled reports in different formats via e-mail
or FTP. Even with these additional features, though, the cost of the software tool is still quite
affordable.

Why This Is Important
It is important to closely monitor the traffic from your e-commerce application for several rea-
sons. For starters, if there is a steady increase of traffic over time, you will need to prepare for
this by scaling the hosting plan to accommodate the abundance of traffic. Generating reports
about the traffic is a great tool to keep a close eye on everything.

Another valuable reason is that most of the traffic-monitoring tools will provide you with
information about where your users or customers originated. Therefore, if you have been
advertising on another affiliate website or several websites, you will be able to monitor how
successful these advertising campaigns are to your application and business by viewing how
many individuals are originating from each source.

Lastly, you will also be able to identify any errors that have been occurring. The next sec-
tion of the chapter will discuss this in more detail.

Performance
In addition to monitoring the traffic of your web application, it’s important to monitor the
overall performance. This type of monitoring is important because there is no true test for
how the application will perform until you deploy it to the production environment and the
users begin utilizing it.

One such tool provided by Microsoft is Performance Monitor. Performance Monitor can
give you real-time statistics about an ASP.NET application running on a server. These statistics
include the amount of CPU cycles being used, the number of threads being used, and the
amount of memory being consumed. To use this tool, click the Windows Start button, and
then select Run. Type perfmon in the Run dialog box. When you execute this command, the
Performance Monitor will launch, as shown in Figure 28-1.

When the Performance Monitor appears, you can use three default counters: pages/sec,
average queue disk length, and % processor time. Since you are more concerned with ASP.NET
counters, you can add ASP.NET specific counters by right-clicking the main window and
choosing Add Counters. After choosing this menu item, the Add Counters dialog box will
launch, as shown in Figure 28-2.

CHAPTER 28 ■ SUPPORTING AND MAINTAINING THE APPLICATION602

7249ch28.qxd 11/13/06 9:28 PM Page 602

Figure 28-1. The Performance Monitor

Figure 28-2. Adding a performance counter

CHAPTER 28 ■ SUPPORTING AND MAINTAINING THE APPLICATION 603

7249ch28.qxd 11/13/06 9:28 PM Page 603

When the Add Counters dialog box appears, you’ll see a drop-down list of many different
performance objects that you can view. Focusing on the ASP.NET objects, choose the ASP.NET
object, and select All Counters. This will then add all the performance counters to the monitor
that pertain to the ASP.NET applications running on the specified machine. On the top menu,
click the various views. Finally, run your web application, and view the different counters to
monitor your web application.

Discovering and Solving Errors
Undoubtedly, after you launch your e-commerce application, you will find that some errors
are occurring. You might luck out and find these errors in the testing phase, but that is cer-
tainly not the norm. The main reason for this is that you can test only to a certain degree to
find any complications in your application. Therefore, it is important to watch for any of these
complications after the application is launched so you can diagnose them quickly, make the
corrections, and redeploy the updated source code.

In the case study, you added some basic logging of any exceptions that occur within the
application. However, you will need to check this log frequently so you can determine whether
errors have been encountered. An excellent addition is to create an e-mailing feature for the
exceptions so that you do not have to check the log manually all the time.

Optimizing the Application
As your application lives longer and expands, the goal is to gain more and more traffic for the
e-commerce site. Knowing this, you will probably find some bottlenecks in certain areas that
you’ll want to address. Or you might come to the conclusion that you need to scale the hosting
platform to accommodate the increased volumes of traffic. Although this is a great problem to
have because it will potentially mean more sales for the company, it will require some addi-
tional work.

As a result, you will need to make some optimizations to your application. Optimizations
can take many forms, such as additional caching of data, stress testing of the overall applica-
tion, or even the introduction of a new feature, such as SQL cache invalidation. You can cache
data within the code in the form of retaining information on the server. As the product catalog
grows, this is a prime candidate for implementing SQL Server caching.

SQL caching invalidation is a new feature within the .NET Framework 2.0 and SQL Server
2005 where you can have the local machine or client cache information keep displaying the
cached data until a value in a specified table occurs. This is a great technique for the product
catalog so that if there are no alterations made to the overall catalog, the cached information
will be displayed when requested by a customer.

The following exercise shows how to set up the SQL caching invalidation functionality.

CHAPTER 28 ■ SUPPORTING AND MAINTAINING THE APPLICATION604

7249ch28.qxd 11/13/06 9:28 PM Page 604

Exercise: Implementing SQL Cache Invalidation

This exercise shows the necessary configurations within SQL Server 2005 as well as any web forms that will take
advantage of this feature. Follow these steps:

1. You need to configure the LittleItalyVineyards database and the table so you can achieve SQL caching.
You do this by using the ASPNET_REGSQL utility. This utility is included when the .NET 2.0 Framework
is installed and is in the following directory:

%windir%\Microsoft.NET\Framework\FrameworkVersion

Be sure that %windir% represents the Windows default directory where the .NET Framework 2.0 is
installed along with the version. At the time of this writing, version 2.0.50727 of the .NET Framework
2.0 is being used, so the full file path will look like the following:

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727

You’ll need to use this path in the command window in the next step.

2. In the previous step, you determined where the ASPNET_REGSQL utility is located. Now you can use
the utility by opening a command window. Click the Start button, and then click Run. In the Run win-
dow, type cmd, and click OK. In the command window, change the directory to the path where the
utility is located by using the following command:

cd C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727

The command prompt will be set in the command window, as shown in Figure 28-3.

Figure 28-3. The command prompt

CHAPTER 28 ■ SUPPORTING AND MAINTAINING THE APPLICATION 605

7249ch28.qxd 11/13/06 9:28 PM Page 605

An easier way to run the utility is to launch the Visual Studio 2005 command prompt by clicking the
Start button and then selecting Programs ➤ Microsoft Visual Studio 2005 ➤ Visual Studio Tools ➤
Visual Studio 2005 Command Prompt. By launching this tool, a command prompt will be automatically
launched with a path that lets you run the ASPNET_REGSQL utility without entering the path manually.

3. From this point, you can focus on the utility. The ASPNET_REGSQL utility needs specific information
passed as parameters, including the server name, username, password, database name, and database
table name. So, enter the following command all on one line:

aspnet_regsql -S <Server> -U <Username> -P <Password>
-ed -d LittleItalyVineyard -et -t [Table Name]

How It Works

As mentioned, the ASPNET_REGSQL utility requires a certain number of parameters. You also need to
specify two other switches. As shown, you already specified the server name, username, and pass-
word. However, after the password, you specify the switch –ed to enable a database for SQL cache
dependency. Following the switch is the database name, LittleItalyVineyard, and then the final switch,
–et. The –et switch simply instructs the utility to enable a database table for SQL cache dependency
followed by the name of the table you want the caching to monitor. Lastly, if your security model for
your database is using integrated security, you have the ability to provide a connection string specify-
ing the switch –C.

4. After entering the complete utility command with the specified parameters, press Enter, and if the util-
ity executes without any errors, you’ll see a message indicating that the command has finished and
the configuration is complete.

■Note Administrative access will need to be granted to the database to use the ASPNET_REGSQL utility.

5. A few last pieces of functionality remain. You need to make an addition to the root Web.config file, as
follows:

<caching>
<sqlCacheDependency enabled="true" pollTime="60000">

<databases>
<add name="LittleItalyVineyard" connectionStringName="SQLCONN" />

</databases>
</sqlCacheDependency>

</caching>

How It Works

In the Web.config file, the SqlCacheDependency is enabled to true, and it references SQLCONN as the
connection string to use. Lastly, the pollTime element is set to 60000, which is evaluated in millisec-
onds; this means that one time per every minute, the application will check the cache table for
changes.

CHAPTER 28 ■ SUPPORTING AND MAINTAINING THE APPLICATION606

7249ch28.qxd 11/13/06 9:28 PM Page 606

6. The last task necessary is within the actual web forms where the SQL caching will take place. You will
provide a template for what needs to be added to the web forms. Therefore, add the following page
directives to any web form where you want to take advantage of this caching functionality:

<%@ OutputCache Duration="3600"
SqlDependency="LittleItalyVineyard:[Table Name]"
VaryByParam="none" %>

How It Works

These page directives specify the SqlDependency using the LittleItalyVineyard database and the name
of the table. When this is placed in a web form, any data being displayed from the table specified from
the LittleItalyVineyard database will be cached until a change or update is made to the specified table.
VaryByParam is a required parameter that specifies whether any variables will be cached in separate
entries. Lastly, the Duration parameter is also required, which specifies the length of time the cache
will remain, also measured in milliseconds.

You have arrived at the end of the final exercise—congratulations! You have the required knowledge to implement
caching for your application, which will allow for greater performance.

Summary
At long last, you have completed the entire e-commerce application. You should definitely con-
gratulate yourself because you had quite a lot of information to comprehend. You can view the case
study application that was built step by step in this book at http://www.littleitalyvineyards.com,
and you can test the functionality as a customer or as an administrator. You can download all the
source code for this case study site from the Apress website.

I would sincerely like to thank you for purchasing this book, and I thoroughly hope you
enjoyed the challenge and learning opportunity. If at any time you have any questions, do not
hesitate to contact me at my company’s website, http://www.sarknasoft.com, or at my per-
sonal website, http://www.paulsarknas.com. I would love to hear your feedback about your
experience.

Lastly, I am available on a consulting basis for any of your technology needs, including
building an application from scratch, offering guidance for an existing project, or helping
resolve a difficult scenario or business logic question. I hope to hear from you soon!

CHAPTER 28 ■ SUPPORTING AND MAINTAINING THE APPLICATION 607

7249ch28.qxd 11/13/06 9:28 PM Page 607

7249ch28.qxd 11/13/06 9:28 PM Page 608

■Symbols
~ tilde, 495

■A
About Us section/web page, 23, 198
Account folder, 476, 484
account login, 24, 479
Account Registration activity diagram, 45
accounts

for administrator, creating, 433–473
for customers, creating, 350–365, 475–498
registering, 45

activity diagrams, 40–46
actors, 47
Address class, 52, 118
Address table, 74
AddressID field

Address table, 75
EndUser table, 72

AddressLine field, 75
AddressLine2 field, 75
Admin directory, 100
Admin folder, 434
administrator login, creating, 437–446
administrator’s control panel, 433–473

creating, 433–436
login and, 437–446

advertising
customer memberships and, 29
selling space for, 29

affiliate products, selling, 28
age verification, 24
Alter Wind tool, 601
application blocks, 113, 132
Application_Error event, 187
architecture, 111–114

business logic layer and, 151
data access layer and, 131

arrow symbol, 40
ASHX files, 243
ASP.NET 2.0, master page and, 193
ASPNET_REGSQL utility, 605
associations, 47
ATM machines, PayPal and, 571
attacks, 33, 34

■B
bank accounts, PayPal transactions and, 568
banks, 35
barriers to entry, 5
best practices, 601–607
billing information, 390–404
black circle/clear edge symbol, 40
business logic, 40
business logic layer, 114, 151–172

implementing, 152–159
product catalog code and, 232

BusinessLogic class library, 104

■C
C#, 8
Calendar control, 522
CartGuid field, 78
case study. See Little Italy Vineyards case

study
certificate-signing requests (CSRs), 591
certificates, 590–596
CertPath property, 495
CheckForErrors() method, 388
Checking Out activity diagram, 43
checkout process, 43, 347–373
checks

physical, from PayPal funds, 570
electronic, 33

circle symbol, black, 40
City field, 75
Class Designer tool, 8
class diagrams, 48–54
class libraries, 103
classes, implementing, 134–149. See also

common classes
clients

gathering requirements and, 19–25
interviewing, 21

CLR (common language runtime), 8
code. See also exercises

final building and, 575
code reuse and, 174
precompiling, 576

commandAddProduct button, 471
commandUpdate button, 523

Index

609

7249chIDX.qxd 11/13/06 9:29 PM Page 609

commerce, 3
Common class library, 103
common classes

business logic layer and, 152
creating, 119–126
integration and, 173
reasons for using, 115

common language runtime (CLR), 8
common objects

business logic layer and, 152
creating, 115–130
integration and, 173
object modeling and, 48
reasons for using, 115

compilation options, 575–582
configuring

Developer Central test account, 322–343
production environment, 583–597
SQL Server 2005 database, 590
SSL certificates, 590–596
test certificates, 342

connection string, 139, 149
constructor, 149
contact form, 24, 212
Contact Us web form, 212–220
ContactInformation class, 52, 118
ContactInformation table, 76
ContactInformationID field

ContactInformation table, 77
EndUser table, 72

content management system, 23
ContentPlaceHolder control, 193, 195
control panel, for the administrator, 433–473

creating, 433–436
login and, 437–446

counters, 602
creating. See also implementing

administrator login, 437–446
administrator’s control panel, 433–436
class libraries, 104
classes, 119–126, 134–149
common objects, 115–130
customer accounts, 350–365, 475–498
databases, 55
order fulfillment, 518–524
product catalog, 223–250
product details, 250–259
products, 446–457
projects, in Visual Studio, 93
relationships, 79–86
sandbox account, 328
shopping cart, 269–319
solution file, 92
stored procedures, 224–228
StoredProcedure class, 143
tables, 59–79

test certificates, 336
web pages/web forms, 198–220
Web project, 95

credit card information, 34, 390–404
credit card-processing companies, 35, 567
credit cards, 33, 322. See also processing

payments
CreditCard class, 53, 119
CreditCardDetailsType class, 383
CSRs (certificate-signing requests), 591
CSS directory, 100
customers

accounts for, creating, 350–365, 475–498
account login for, 24, 479
content management system for, 23
keeping informed about their order, 524
memberships for, 29
order tracking information for, 23
unsubscribing from e-newsletter, 557–566

■D
Data Access Application Block (Microsoft),

113, 132
data access layer, 113, 131–149

business logic layer and, 151
implementing, 134–149
product catalog code and, 229

DataAccess class library, 104
DataAccessBase class, 134–139, 165
DataBaseHelper class, 144
databases

configuring, 590
creating, 55
designing, 55–89

DataKeyNames property, 307
DataList control, 471
DateCreated field, 79
debit card, PayPal and, 571
debugging, 174
debugging feature, disabling, 579
dedicated hosting, 585
Default Error web form, 220
Default.aspx web form, 199
deleting abandoned shopping carts, 314
demand, supply for, 31
deploying the e-commerce application,

575–582, 597
Description field, 63
designing

databases, 55–89
user interface, 191

Developer Central test account, configuring,
322–343

development environment, 9
diamond symbol, 40
direct payments, 381–389

■INDEX610

7249chIDX.qxd 11/13/06 9:29 PM Page 610

directories, 100
disclaimers, 25
displaying

order details, 487–498, 508–518
orders, 480–486, 501–508
products, 468–472
shopping cart, 285–300

DNS servers, 584
documentation, 21
DoDirectPaymentRequestDetails class, 382
DoDirectPaymentRequestType class, 382
domain, registering/setting up, 583
downloads

Data Access Application Block, 132
WebLog Expert, 602

DropDownList control, 455, 465
dropdownlistOrderStatus control, 518

■E
e-commerce, defined, 4
e-commerce application, 22

About Us section/About Us page of, 23,
198

configuring production environment for,
583–597

contact form for, 24, 212
deploying, 575–582, 597
finalizing, 579
optimizing, 604
promoting, 533–566
publishing, 576
support/maintenance for, 601–607

e-commerce systems, 3–6
barriers to, 5
benefits of, 4
modeling, 39–54
risks and, 31–35

e-mail manager, 175–181
e-mailing customers, 525, 530, 543–557
e-newsletters, 543–566

template for, 549, 555, 561
unsubscribing from, 557–566

electronic checks, 33
electronic commerce. See e-commerce
electronic transfers, from PayPal account,

570
Email field, 77
EmailContents struct, 526, 530, 555
EmailManager class, 175–181, 525, 530, 555
EmailTemplates folder, 546
encryption, 34
EndUser class, 48, 116
EndUser property, 483
EndUser table, 71, 84
EndUserID field, 67, 72

EndUserType class, 49, 116, 127
EndUserType table, 73, 87
EndUserTypeID field

EndUser table, 72
EndUserType table, 73

error web page, 187, 220
ErrorPage.aspx, 189, 220
errors, finding/resolving, 604
exception handling, 187
ExceptionLog directory, 190
exercises

About Us web page, 199
administrator’s control panel, creating,

434–436
billing/shipping/credit card information,

obtaining, 390–404
business logic layer, implementing,

154–172
certificate-signing requests, generating,

591
connection string, implementing, 140
Contact Us web form, 212–220
customer accounts, creating, 350–365,

475–498
data access layer, implementing business

logic layer with, 160–172
DataAccessBase class, implementing,

135–139
DataBaseHelper class, implementing, 144
databases, creating, 56
Developer Central test account,

registering, 323
direct payments, 381–389
e-commerce application, finalizing, 580
e-mail manager, implementing, 175–181
e-newsletters, implementing, 544–566
exception handling, implementing, 187
FAQ web page, 206
IIS configuration, 585
issuing refunds, 527–530
login functionality

for customers, 347, 366–372, 479
for the administrator, 437–446

master page, 193–198
Microsoft Data Access Application Block,

implementing, 133
orders, 481–525
payment process, 404–431
PayPal API credentials, implementing,

376–381
PayPal transactions, accessing funds from,

568
PayPal web service, 181–187
precompiling source code, 576
product catalog, 229–244, 259–267

■INDEX 611

Find it faster at http://superindex.apress.com
/

7249chIDX.qxd 11/13/06 9:29 PM Page 611

product images, displaying, 244–250
products, 446–472
Products_Select stored procedure,

creating, 225
relationships, creating, 80
sandbox account, creating, 328
shopping cart, 270–313
SSL certificates, installing, 594
SQL caching invalidation, implementing,

605
StoredProcedure class, creating, 143
tables, creating, 59
test certificates, 336–345
upselling, 534–543
Winery web page, 202

■F
FAQ web page, 206–211
Fax field, 77
fileuploadProductImage control, 468
FirstName field, 72
FK_EndUser_Address constraint, 85
FK_EndUser_ContactInformation constraint,

85
FK_EndUser_EndUserType constraint, 85
FK_OrderDetails_Orders constraint, 83
FK_OrderDetails_Product constraint, 84
FK_Orders_OrderStatus constraint, 84
FK_Products_ProductCategory constraint, 86
FK_Products_ProductImages constraint, 86
FK_ShoppingCart_Products constraint, 86
FTP connections, 597
fulfilling orders, 518–524
funds from transactions, accessing, 567–571

■G
generic handler, 243
GetAmountValue() method, 497
GetTransactionDetails() method, 495
GetTransactionDetailsRequestType()

method, 495
GetTransactionDetailsResponseType()

method, 495
Global.asax file, 187
“going live,” 575, 581
graphics, 191
GridView control, 485
gridviewAssociated control, 542
gridviewShoppingCart control, 392

■H
hosting e-commerce applications, 9
hosting plans, setting up, 584
HTML (Hypertext Markup Language), 113,

191

HTTP handler, 243
Hypertext Markup Language (HTML), 113,

191

■I
IBusinessLogic interface, 152, 155
ICANN, 584
IIS (Internet Information Services), 8, 585
image button click event, 523
image control, 522
Images directory, 100
implementing. See also creating

business logic layer, 152–159
connection string, 140
data access layer, 133–149
DataAccessBase class, 135–139
DataBaseHelper class, 144
e-mail manager, 175–181
exception handling, 187
master page, 192–198
Microsoft Data Access Application Block,

133
operational manager, 174–181
presentation layer, 191–220
web services, 181–187

in-house hosting, 9
insert statements, 87
interfaces, 152
Internet Information Services (IIS), 8, 585
interviews, 21
Invoke() method, 154, 159
IsSubmissionSuccess property, 389, 422, 496
IsSubscribed field, 72
issuing refunds, 526–530
items

abandoned shopping cart and, 44
adding to shopping cart, 41, 269–285
displaying in shopping cart, 285–300
running total of in shopping cart, 299
searching for, 40

■L
labelName control, 564, 566
labelOrderTotal control, 498
labelTax control, 498
labelWelcome control, 486
LastName field, 72
layers, 111
liability, 25
Little Italy Vineyards case study, 13–16. See

also e-commerce application
affiliate products and, 28
application support and, 601–607
database for, creating, 56
design/layout for, 191

■INDEX612

7249chIDX.qxd 11/13/06 9:29 PM Page 612

domain registration for, 584
IIS configuration and, 587
modeling, 39–54
product catalog for, 22, 223–268
reasons for using, 15
solution file for, 92
system architecture for, 112
website for, 607

live accounts, 575, 581
LoadOrderDetails() method, 497
LoadPromotion() method, 543
LoadShoppingCart() method, 297, 309
local cookie, 283, 285
log files, 601
LogException() method, 189
logical attacks, 34
login functionality

for the administrator, 437–446
for customers, 347, 366–372, 479

logo, for administrator’s control panel, 436

■M
MailAddress class, 179
MailMessage class, 178
main product, selling, 27
maintenance, 174, 601–607
management teams, gathering requirements

and, 19–25
master page, 192–198

About Us web page and, 200
Contact Us web form and, 213
FAQ web page and, 207
Winery web form and, 204

memberships, in Wine of the Month Club, 24,
29

Merlino, Joe, 112
MessageBody property, 555
Microsoft

Data Access Application Block, 113, 132
tools and, 7–11
Visio, 8, 39
Visual Studio 2005. See Visual Studio 2005

Microsoft Performance Monitor, 602
Microsoft Solution Framework (MSF), 20
modeling software systems, 39–54
money market, PayPal and, 570
monitoring your application, 601
monthly subscriptions, 24
MSF (Microsoft Solution Framework), 20
multitier architecture, 111, 151

■N
n-tier architecture, 111, 151
name servers, 584
.NET Framework 2.0, 8

NewsletterBody property, 556
NewsletterManager class, 555, 557
Newsletter_Select stored procedure, 544
NewsletterSelectData class, 544
NewsletterUnsubscribe_Update stored

procedure, 558
NewsletterUpdateData class, 558

■O
Object Management Group, 39
object modeling, 39–54
objects. See common objects
official requirements, 22
Open Tracker tool, 601
Operational class library, 104
operational manager, 173–181
optimizing your application, 604
order details, displaying, 487–498, 508–518
OrderDate field, 67
OrderDetail class, 118, 429
OrderDetailID field, 69
OrderDetails class, 51
OrderDetails table, 68, 83, 487
OrderDetailsInsertData class, 423
OrderDetails_Select stored procedure, 487
Order_Details stored procedures, 423
OrderID field

OrderDetails table, 69
Orders table, 67

OrderID relationship, 83
Order_Insert stored procedures, 423
OrderInsertData class, 423
OrderInsertTransaction class, 427
orders

displaying, 480–486, 501–508
fulfilling, 518–524
issuing refunds for, 526–530
keeping customers informed about, 524
managing, 501–531
SSL certificates and, 590–596
tracking, 23
updating, 518–524

Orders class, 51, 117, 497
Orders table, 66, 84, 481
OrdersAllSelectData class, 503
OrdersAll_Select stored procedure, 502
OrdersByID_Select stored procedure, 509
Orders_Select stored procedure, 481
OrdersSelectData class, 481
OrderSelectByIDData class, 509, 511
OrderStatus table, 70, 87, 481
OrderStatusID field

Orders table, 67
OrderStatus table, 70

OrderStatusName field, 70

■INDEX 613

Find it faster at http://superindex.apress.com
/

7249chIDX.qxd 11/13/06 9:29 PM Page 613

OrderStatusSelectData class, 509
OrderStatus_Select stored procedure, 509
OrderTotal property, 496
Orders_Update stored procedure, 519, 521
OrderUpdateData class, 519
outsourced hosting, 10
oval/rectangular symbol, 40

■P
P12 files, 342
packages, 47
panelPromotion, 542
panelSuccess/panelFailure, 419, 421
Parameters property, 288
partnering, 28
Password field, 72
passwords, protecting, 34
payment-processing companies, 35
payments. See processing payments
PayPal

reasons for using, 322
specifying URL for, 580

PayPal APIs, 343, 375–381, 494
PayPal SDK, 321–343
PayPal shops, 571
PayPal transactions, 22, 33. See also

processing payments
accessing funds from, 567–571
processing, 321–345
SSL certificates and, 590–596

PayPal web reference, 184
PayPal web service, 181–187
PayPalAPISoapBinding class, 495
PayPalInformation struct, 382
PayPalManager class, 182, 376

GetTransactionDetails() method, 494,
LoadOrderDetails() method, 497
ProcessDirectPayment() method, 381

performance, 579, 602
Performance Monitor (Microsoft), 602
Phone field, 77
Phone2 field, 77
physical attacks, 33
PostalCode field, 75
potential demand, 31
precompiling code, 576
presentation layer, 95, 113, 191–220

business logic layer and, 151
product catalog code and, 235–244

prevention, 34
Price field, 64
ProcessAbandonedShoppingCarts job, 315
ProcessAddOrderclass, 429
ProcessAddProduct class, 450
ProcessAddShoppingCart class, 279

ProcessAdminLogin class, 439, 446
ProcessDeleteShoppingCart, 306
ProcessDirectPayment() method, 381
ProcessEndUserLogin class, 480
ProcessGetAllOrders class, 503, 508
ProcessGetOrderByID class, 511, 513
ProcessGetOrderDetails class, 489, 493
ProcessGetOrders class, 483, 486
ProcessGetOrderStatus class, 511, 518
ProcessGetProductByID class, 170, 253
ProcessGetProductCategory class, 452
ProcessGetProducts class, 157, 159, 232, 472
ProcessGetPromotions class, 536, 543
ProcessGetShoppingCart class, 291
Processing Abandoned Shopping Carts

activity diagram, 44
processing payments, 33, 43, 321–345,

375–431
accessing funds from, 567–571
direct payments and, 381–389
finalizing the process, 42, 422–431
submitting payment and, 404–422
SSL certificates for, 590–596

ProcessNewsletter class, 545, 557
ProcessNewsletterUnsubscribe class, 560
ProcessUpdateOrder class, 521, 524
ProcessUpdateProduct class, 461
ProcessUpdateShoppingCart class, 305
product catalog, 22, 223–268

code/classes for, 229–244
creating, 223–250
products

adding to, 446–457
updating in, 458–468

search functionality for, 259–267
Product class, 50, 116, 163, 169
product details, creating, 250–259
product images, displaying, 244–250
ProductCategory class, 50, 117
ProductCategory table, 64, 87, 451
ProductCategoryID field

ProductCategory table, 64
Products table, 63

ProductCategoryName field, 64
ProductCategory_Select stored procedure,

451
ProductID field

OrderDetails table, 69
Products table, 63
ShoppingCart table, 79

ProductID relationship, 83
ProductImage field, 66
ProductImageID field

ProductImages table, 65
Products table, 63

■INDEX614

7249chIDX.qxd 11/13/06 9:29 PM Page 614

ProductImages table, 65
ProductInsertData folder, 448
production environment, 9, 583–597
ProductPromotionSelectData class, 535
ProductPromotion_Select stored procedure,

534
products

creating, 446–457
displaying, 468–472
updating, 457–468
upselling, 28, 533–543

Products table, 62, 85, 459, 487
ProductSelectByIDData class, 161–172
ProductSelectByIDDataParameters class,

165–169
ProductSelectData class, 230
ProductsImages table, 459
Product_Insert stored procedure, 448
ProductUpdateData class, 459
ProductUpdateDataParameters class, 461
Product_Update stored procedure, 458
profits, generating from sales, 27–29
projects, creating in Visual Studio, 93
promoting your product/website, 533–566

e-newsletters and, 543–557
upselling and, 28, 533–543

publishing e-commerce applications, 576

■Q
Quantity field, 69, 79

■R
Reese, Jeff, 191
refactoring within Visual Studio 2005,

126–130
refunds, issuing, 526–530
RefundTransaction() method, 528
related products, 533–543
Relationship Script

EndUser table, 85
OrderDetails table, 84
Orders table, 84
Products table, 86
ShoppingCart table, 86

relationships, creating, 79–86
requirements

defined, 20
gathering, 19–25
official, 22

resources for further reading
Microsoft Solution Framework, 20
UML, 39
web services, 181

ResultSet property, 292

revenue, generating from sales, 27–29
risks, e-commerce systems and, 31–35

■S
sales, turning into profits, 27–29
sample code. See code; exercises
sandbox account, 183, 327
SavedProductImageID property, 467
scalability, 174
scenarios, 40
scope creep, 21
Scripts directory, 100
scripts. See Relationship Script; Table Script
Search activity diagram, 40
search functionality, for product catalog,

259–267
secure connections, 33
Secure Sockets Layer (SSL) certificates, 8, 33,

590–596
selection changed event, 523
SendNewsletter() method, 555, 557, 561
sensitive data, 33
server-hosting companies, 32
shared hosting, 585
ShipDate field, 68
ShipDate property, 513, 518, 529
shipping information, 390–404
shopping cart, 22

abandoned, 44, 313
adding items to, 41, 269–285
building, 269–319
checkout process and, 347–373
displaying, 285–300
running total of products in, 299
updating, 300–313

Shopping Cart activity diagram, 41
shopping cart ID, 283, 285
ShoppingCart_Delete stored procedure, 301
ShoppingCart_DeleteAbandoned stored

procedure, 314
ShoppingCart class, 53, 119
ShoppingCart property, 276
ShoppingCart table, 78, 86
ShoppingCart.aspx web form, 307
ShoppingCartID field, 78
ShoppingCart_Insert stored procedure, 270,

275
ShoppingCartInsertData class, 273
ShoppingCartSelectData class, 286
ShoppingCart_Update stored procedure, 301
ShoppingCartUpdateData class, 302
ShoppingCart_Select stored procedure, 285
SmtpClient class, 178
solid black circle symbol, 40

■INDEX 615

Find it faster at http://superindex.apress.com
/

7249chIDX.qxd 11/13/06 9:29 PM Page 615

solution file, creating, 92
source code. See code; exercises
SQL caching invalidation, 604
SQL injection attacks, 34
SQL Server 2005, 8, 55–89
SQL Server 2005 Express, 56
SQL Server jobs, deleting abandoned

shopping carts and, 314
SQL Server Management Studio, 55
SQLHelper class, 165
SSL (Secure Sockets Layer) certificates, 8, 33,

590–596
Starkowicz, Eric, 191
State field, 75
stored procedures, 34, 224–228
StoredProcedure class, 142, 165, 274
SubmissionError property, 389, 422
SubmitOrder() method, 422
subscriptions, 24
supply and demand, 31
support, 601–607
symbols, for activity diagrams, 40
system architecture, 111–114

business logic layer and, 151
data access layer and, 131

system boundaries, 47
system downtime, 32

■T
T-SQL (Transact-SQL), 8
Table Script

Address table, 76
ContactInformation table, 77
EndUser table, 73
EndUserType table, 74
OrderDetails table, 70
Orders table, 68
OrderStatus table, 71
Product Category table, 65
ProductImages table, 66
ShoppingCart table, 79

tables, 59–79, 87
Tax property, 496
test certificates

configuring, 342
creating, 336
incorporating into web projects, 344

textShippedDate text box, 523
tiers, 111
tilde (~), 495
tools, 7–11

ASPNET_REGSQL, 605
Class Designer, 8
.NET Framework 2.0, 8
SQL Server Management Studio, 55
traffic-monitoring, 601
Visio, 8
Visual Studio 2005. See Visual Studio 2005

tracking orders, 23
TrackingNumber field, 68
traffic, monitoring, 601
Transact-SQL (T-SQL), 8
TransactionBase class, 427
TransactionID field, 67
transactions. See processing payments
try/catch statements, 190
type inserts, 87
TypeName field, 74

■U
UI (user interface), design/layout for, 191
UML (Unified Modeling Language), 8, 39–54
uniform resource locator (URL), specifying

for PayPal, 580
UnsubscribeCustomer() method, 566
updating

orders, 518–524
products, 457–468
shopping cart, 300–313

upselling, 28, 533–543
URL (uniform resource locator), specifying

for PayPal, 580
use cases, 46
user accounts, creating, 350–365, 475–498
user interface (UI), design/layout for, 191
UserData property, 555
users. See customers
Utilities class, 180

■V
Visio (Microsoft), 8, 39
Visual Studio 2005 (Microsoft), 7, 91–108

business logic layer, implementing into,
154

■INDEX616

7249chIDX.qxd 11/13/06 9:29 PM Page 616

Default.aspx web form and, 199
refactoring within, 126–130

Visual Studio 2005 Class Designer tool, 8
VPN connections, 597

■W
warnings, resolving, 575
web forms, creating, 198–220
web pages

creating, 198–220
master page and, 192–198

Web project, 95, 99
web references, adding to projects, 181
web servers, IIS and, 585

web services, 181–187
Web.config file, finalizing, 597
WebLog Expert tool, 601
website. See e-commerce application
wine business case study. See Little Italy

Vineyards case study
Wine of the Month Club, 24, 29
Winery web page, 202

■X
XML data, 113

■Z
ZIP code, 75

■INDEX 617

Find it faster at http://superindex.apress.com
/

7249chIDX.qxd 11/13/06 9:29 PM Page 617

	Pro ASP.NET 2.0 E-Commerce in C# 2005
	Contents
	Introduction
	PART 1 The Basics
	Chapter 1 Introducing E-commerce Systems.
	Chapter 2 Introducing the Microsoft Tools
	Chapter 3 Exploring the Company Background for the Case Study

	PART 2 The Business Aspects
	Chapter 4 Gathering the Requirements
	Chapter 5 Turning Sales into Profits
	Chapter 6 Examining the Risks

	PART 3 The Project Plan and Design
	Chapter 7 Modeling Objects with UML
	Chapter 8 Designing the Database with SQL Server 2005
	Chapter 9 Using Visual Studio 2005.

	PART 4 Architecture
	Chapter 10 Building the Complete System Architecture.
	Chapter 11 Creating the Common Objects.
	Chapter 12 Creating the Data Access Layer
	Chapter 13 Creating the Business Logic Layer
	Chapter 14 Exploring Your Integration Options
	Chapter 15 Creating the Presentation Layer

	PART 5 Core Development
	Chapter 16 Developing the Product Catalog
	Chapter 17 Building the Shopping Cart.
	Chapter 18 Integrating the PayPal SDK.
	Chapter 19 Implementing the Checkout Process
	Chapter 20 Processing the Payment
	Chapter 21 Creating the Administrator’s Control Panel.
	Chapter 22 Building the Customer’s Account

	PART 6 Order Fulfillment and Promotion
	Chapter 23 Managing the Orders
	Chapter 24 Promoting the Site and Upselling.
	Chapter 25 Accessing the Money from the Credit Card Transaction

	PART 7 Deployment
	Chapter 26 Exploring Your Compilation and Deployment Options
	Chapter 27 Configuring the Production Environment.

	PART 8 Aftercare
	Chapter 28 Supporting and Maintaining the Application

	Index

